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Abstract

Systematic effects on total station measurements arising from solid glass corner cube prisms
can lead to deviations at the mm-level. We show that these deviations can be mitigated by
forward modeling based on geometrical optics and assumed properties of the reflectors, or by
empirical modeling based on calibration measurements with a variety of reflector poses.
Establishing the forward model is less costly, but some empirical modeling is required to
derive necessary pa-rameters which are not disclosed by the manufacturers. Empirical
modeling can better account for specific deviations of individual prisms and for deviations
related to the particular data pro-cessing within a total station. Corrections obtained by
modeling are applicable to measurements of moving prisms, e.g., for tracking drones or
construction machines, and to geodetic network measurements where differences exceeding 5
mm could result from uncorrected prism effects even when using high-precision single prisms.

1 Introduction

Precise distance and angle measurements using a total station typically require a retro-reflective
prism as signalization of the target point. In surveying, solid glass corner cubes are normally
used for this purpose; see e.g., Rueger (1996). Refraction at the prism’s front face and the lower
propagation speed inside the glass significantly affect distance and angle measurements. An
additive constant can compensate for these effects only if the prism is perfectly aligned with the
incoming line-of-sight (LoS). With other prism orientations, and in particular when using prism
assemblies like a 360-degree reflector, systematic deviations at the level of several mm can
arise, see e.g., Heister (1998), Favre und Hennes (2000), Braun (2015), Lackner and Lienhart
(2016). These effects can surpass the quality specifications of the reflectors and arise from
their use, particularly with large angles of incidence (AOI) of the measurement beams onto the
prisms.

For laser tracker measurements, hollow corner cube prisms are typically used nowadays, i.e.,
prisms with orthogonal reflective surfaces but air instead of glass in front of them, or only a thin
protective layer of glass. Such reflectors are usually too expensive and not robust enough for use
in surveying. Other means of mitigating deviations due to the reflector are needed. The effects
are smaller for reflectors with smaller prisms, and manufacturers have developed reflectors that
minimize certain effects over relatively large ranges of reflector orientations, see e.g. Bernhard
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et al. (2008). Nevertheless, the effects can limit the accuracy in practical applications. Due to
their systematic nature, it is in principle possible to mitigate them.

We show that compensation by forward modeling based on geometrical optics and assumed
properties of the prisms and reflectors is possible, or by empirical modeling based on calibration
measurements with a variety of prism poses. Establishing the numerical forward model is less
costly, but some empirical modeling is required to derive necessary parameters of the prisms
and total station which are not disclosed by the manufacturers. Empirical modeling, on the other
hand, can better account for specific deviations of individual prisms (rather than prism types)
and for deviations related to the particular data processing within a total station, especially in
relation to image-based angle measurements (e.g., ATR for Leica instruments).

The present study has not yet provided a comprehensive solution of the problem. However,
encouraging results were achieved with relatively simple calculations, and priorities for fur-
ther development can be identified using these results. Corrections obtained by modeling as
presented herein are applicable to tasks with moving reflectors, e.g., for tracking drones, tilted
INS-based poles, and to geodetic network measurements where differences exceeding 5 mm
could result from uncorrected prism effects and be forced into observation residuals, primarily
of horizontal and vertical angles, even when using high-precision single prisms.

D/l

Fig. 1: Geometry and key elements of a corner cube prism with a principal ray (red) incident
under an angle-of-incidence o from position 7" (left); key elements in plane 77 (right).

2 Theoretical forward modeling

The idea of forward modeling is to assume the position and orientation of a reflector % relative
to the total station .7 as known, calculate the beam path using geometrical optics, and determine
the deviations of the apparent target point R’ from the reflector’s true reference point R.

A corner cube prism is obtained by cutting a cube of glass into a triangular pyramid with an
equilateral triangle as its base. We follow the terminology used by Peck (1948): The base is the
front face 1y of the prism (see fig. 1, left). We denote the equal lengths of the orthogonal edges
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from the corner E to 7y as a, and the orthogonal projection of E onto 7y as pole P. The depth D
of the prism, i.e., the distance EP is D = a/ /3. The outward pointing unit normal vector of Ty
is ny, and the line through E and P, parallel to ny, is the prism axis. Real prisms for surveying
are often cut out further, e.g., to have a round front. For our purposes, it is sufficient to represent
this by a mask at the triangular front face and by calculating only beams that enter and leave the
prism through the transparent part of this mask.

Typically, distances measured using EDM and a reflector are corrected by an additive (reflector)
constant ¢ such that they refer to R. However, a fixed value is not sufficient to achieve this
correction for all prism orientations. Manufacturers take this into account by choosing glass
with an appropriate refractive index (below 1.5 to above 1.7), mutually adapting the size of
prisms, the geometry of the reflector, and the (typically negative) value of ¢ such that the impact
of the prism on the measured distances is negligible over a certain range of orientations. The
choice can be such that R is obtained if the prism face is (nearly) orthogonal to the EDM
measurement beam (AOI= 0). For this case, and assuming that R lies on the prism axis at a
distance f behind the front face (see fig. 1), this means (see e.g., Riieger, 1996):

1
c=f—-D-—. (1)
nG
In eq. (1), the group index of air has been neglected. Only ng, the one of the glass at the EDM
wavelength needs to be taken into account. Surveying prisms are often coated. This has an
impact on the noise level of the measurements and the deviations modeled herein. However, we

neglect this, herein, and leave potential related improvements of the model for later.

Each incident ray reaching the front face under a suitable angle and at a suitable location will
be reflected three times within the prism—once on each of the orthogonal internal faces—, and
leave it as emanating ray at a different location but parallel to the incident ray. Unless stated
otherwise, we will subsequently only refer to such parallel rays as incident and emanating, and
we will assure not to use others for the calculation. All parallel incident rays have the same path
length within the prism, see e.g., Riieger (1996). We can study the impact of a prism on total
station measurements by analyzing the path of the principal ray, i.e., the incident ray which
enters and exits at the same point /.

Figure 1 shows the situation for a principal ray reaching the prism in the direction of a unit
vector 1 from a total station at T'. The ray intersects 7y at an incidence angle o in point / and
changes direction according to Snell’s law. It reaches E directly along the straight line from /
and returns to 7 along the same path. The point / where it enters and leaves the prism is the
principal point for the direction 1. The incident ray, the refracted ray and the normal vector of
the interface lie in a plane (Mahajan, 2014, p. 15). We denote it as w7. Also, E, P, T and the
intersection J of the straight line from 7 to E lie in 7. This allows us to study the refraction at
the front face in this plane, i.e., in 2D, see fig. 1 (right).

If T were on the prism axis, we would have I = P and the ray would cover the distance D
within the prism. Since the refractive index ng of the glass differs from the one in air, this
distance would appear as D" = ng /ng;; - D, and the total station would yield the coordinates of
the apparent corner E”. Adding the reflector constant would move E” along the prism axis. If
the reflector’s reference point R is also on the prism axis, using the value of ¢ as of eq. (1) would
correct the distance such that the calculated point is R instead of E”.
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However, if the prism axis does not point exactly to the total station, the situation is more
complicated. The principal point is not known beforehand. It is on g7 between J and P, but its
distances e and e, from these two points need to be calculated. Given X7, Xg, and n¢ in the
same coordinate frame, we can calculate xp and x; in that frame, as intersections of the prism
axis and the chord TE with 7ty. The angle of incidence Y in J can be calculated from ny and the

unit vector s pointing from 7 to E; it serves as an approximation o (©) of the AOI in I:
Y= arccos(—n]Tc .s):=a® )

If T is far from the prism, a will practically be equal to . To also account for other situations,
we calculate o and [ by iteration using Snell’s law, the unit vector e between P and J, and the
geometrical situation depicted in fig. 1:

B(i) = arcsin(E -sin a(i)) R arcsin(i -sin a(i)> 3)
nG nG
el! = D-tan g )
X\ =xp+el e 5)
(i)
10— X X1 (6)
A el
ol = arccos(—n} S10) (7

In our later calculations, we terminate the iterations when o changes by less than 10~ °rad,
which corresponds to sub-micrometer accuracy for e; and I. We then check whether I, as
obtained from eq. (5) in the last iteration, lies within the transparent part of the front face mask.
If not, the prism cannot be measured from 7 for the given relative position and orientation.

Fig. 2: Coordinate frames used for
the calculations: total station’s
topocentric frame (t-frame), re-
flector frame (r-frame), ans
prism frame (p-frame) for a re-
flector with a single prism.

The total station’s angle measurements represent the direction of 1. The calculated ("apparent’)
target point lies in that direction from 1. Without ¢ added, it is the apparent prism corner E';
with ¢ added (c < 0) to the distance measurement, it is R’. The deviations of the measurements
follow as the differences between R’ and R. Herein, we define them as ‘expected/observed
minus true’ and quantify them in terms of distance, horizontal angle, and zenith distance. For
plotting and assessing, we convert the angular deviations to metric ones, because the impact of
the prism orientation on the angles is actually an apparent eccentricity of the target.

Ultimately, we need the coordinates of R’ and R in the total station’s left-handed Cartesian
coordinate frame (t-frame). For convenience, we model the reflector through its own left-handed
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Cartesian frame (r-frame) with origin in R and axes aligned with distinct directions on the
reflector, such that its orientation relative to the total station can easily be expressed using a
rotation matrix R. or an axial vector Y. (e.g., Euler angles). Finally, we associate the prism
with a right-handed Cartesian frame (p-frame) whose origin is in £ and whose axes coincide
with the orthogonal edges of the prism. The prism’s pose in the reflector is then represented by
xp and R}, Fig. 2 shows these frames for a reflector with one prism. Without loss of generality,
we carry out the above iterations in the p-frame.

Reflector with single prism

For forward modeling in case of a reflector with a single prism we choose appropriate values for
the prism depth D, for ng as a function of wavelengths (e.g., as a look-up table), for the prism’s
orientation W; and corner Xy in the r-frame, and for the front face mask. All this defines
the reflector #. Then, the position X% and orientation y’. of the reflector in the t-frame must
be defined, and finally the relevant details of the total station 7. Herein, the latter comprise
only the EDM carrier wavelength, the wavelength of the target illumination used for angle
measurement, and the reflector constant c.

As an example, we present results for a Leica standard prism (GPH1) and mini prism (GMP101)
‘measured’ from 30m distance using a hypothetical total station with different wavelengths,
chosen to highlight the sensitivity w.r.t. prism size and wavelengths, see fig. 3. The parameters
of the prisms are given in tab. 1. The reflector is rotated stepwise from —60 to 60 gon about
its vertical axis while R and 7' remain at the same height. The deviations increase with AOI
(here: magnitude of rotation). They stay below 1 mm for distances with AOI up to 40gon
and hardly exceed 2mm even at the extremes. However, they reach 7mm horizontally and 4
vertically. The deviations are 50% smaller for the smaller prism. The angular deviations are
practically independent of the wavelengths but the distance deviations depend strongly on the
EDM wavelength because the fixed value of ¢ is appropriate for only one specific wavelength.
So, while—in the forward modeling as in the real world—the additive constant must be properly
chosen for the specific combination of instrument and reflector, the above calculations can be
carried out using only the group refractive index ng of the EDM.

Reflector with multiple prisms

To model a reflector & with more than one prism, e.g., a 360-degree reflector, each prism (py)
must be defined in terms of Dy, ng,, front mask, xz and 7}, , and the apparent target points R;k
of these prisms, calculated exactly as above, must be combined into an overall target point R',.
That combination should resemble the measurement process of the total station.

It is hard to imagine that the individual prisms would contribute to the distance other than
through a weighted average, where the weights correspond to the signal power returned by the
individual prism and thus to the position of the prism within the EDM beam profile, the AOI and
the area of the respective front face through which emanating rays reach the total station (active
area). Also for the angle measurements the overall result will likely be a weighted average of
the angles corresponding to the individual prisms, but the weights could depend on additional
parameters (e.g., in case of advanced image processing within the total station), or could be 0
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for all but one prism (e.g., if the angle measurement beam is narrowly focused or the image
processing distinguishes the prisms).

Herein, we take a simple approach by averaging the R;k with weights proportional only to the
active area of the prisms. We thus neglect the potential impact of the power distribution within
the beams, of the pointing by the total station, and of potential advanced image processing
within the total station. The results indicate, that already this simple model yields astonishing
agreement between forward modeling and real measurements, see sec. 3.
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3 . Fig. 3: Simulated deviations
o0 . 2 0 20 [ e for - an “upright Leica

NN —— standard and mini prism

£ R i (GPH1,GMP101) with

%-‘;* | | | | \ various combinations of
60 -40 20 0 20 40 60 assumed  wavelengths

c 1l ' ‘ ‘ [ [ ] of EDM and targeting

f 0/ — (ATR); different az-

o | J \ ! | imuthal rotations relative

60 40 20 o 20 40 60 to the total station.

Reflector rotation /gon

3 Empirical modeling

The deviations can also be determined experimentally. For full empirical modeling, measure-
ments need to be made with a sufficiently large variety of distances and 3d orientations of the
reflector to enable interpolation for arbitrary configurations. Such modeling would account for
most or all factors so far neglected in the above forward model and would thus be potentially
more accurate. However, it is costly to establish and requires appropriate filtering to mitigate
the impacts of measurement noise.

: Lab setups for empir-
ical determination of
prism effects: (a) ro-
tation table on trol-
ley of horizontal com-
parator (ETH Ziirich),
(b) prism mounted on
industrial robot (TU
Wien).

Instead of aiming for a full empirical model, we use a small set of experiments herein to assess
the quality of the results from the forward model and to identify needs and potential for its
further development. We carried out measurements with a Leica TS60 and various reflectors on
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the horizontal comparator bench in a lab at ETH Ziirich, see fig. 4a, and with a Leica MS60 and
various reflectors on an industrial robot (Universal Robots URS5 collaborative robotic arm) in a
lab at TU Wien, fig. 4b.

Figure 5a shows results with a Leica GPHI1 reflector at a distance of 30 m from the TS60. The
prism’s front face was vertical, the TS60 and the reflector were at the same height, and the
reflector was rotated about its standing axis in steps of 1deg within +65deg (0: AOI=0; > O:
clockwise, as seen from top). At each step, 10 measurements were recorded. The figure shows
the deviations of the original measurements (gray dots) and their mean (blue line) from the
mean value at rotation 0. The predictions from the forward model (parameters see tab. 1) are
plotted as dashed red lines; the thin, solid red lines are obtained when predicting for a 4gon
lower rotation angle, e.g., to account for an undetected initial misalignment of the setup.

Simulation and measurements differ by less than 0.5 mm for AOI up to 40deg and about 1 mm
for larger AOI. The predicted horizontal deviations fit almost perfectly when assuming the mis-
alignment of —4gon. However, the predicted distances fit almost perfectly when not assuming
this misalignment. We do not yet know the reasons for this discrepancy; possibly they are re-
lated to geometric deviations of the reflector, similar to the ones studied in Losler et al. (2026).
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Fig. 5: Predicted and observed deviations of total station measurements on reflectors for differ-
ent rotation (no tilt); GPH1 (a), GRZ4 (b).

Fig. 5b shows similarly obtained empirical and predicted deviations for a Leica GRZ4 reflector
in upright position, 30 m from the total station, and with clockwise rotation by 400 gon. Based
on the reflector design (6 prisms, alternately flipped upside down and tilted up-/downwards)
we expected that the deviations exactly repeat every 120deg (133 gon) for the angles and ev-
ery 60deg for the distances. We see this, within about 0.3 mm, for the distances and the vertical
angles, but the pattern of the horizontal deviations differs by up to about 1 mm from this repeata-
bility. Sub-mm accuracies of calculated corrections, if possible at all for such reflectors, would
likely require adaptation to the individual prism, not just prism type. The figure also shows
outliers at specific orientations, a similar effect as the one shown and discussed in Lackner and
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Table 1: Parameters used for forward modeling of various reflectors. Except ¢, these values
are assumptions and may not correspond to the true values, which are not directly
observable and not publicly available.
Reflector | D /mm X/, /mm ng @658nm? | ¢/mm®| Comments
GPH1 39.55 —13.35|0|0 1.535 —34.4 | Size determined for D(AOI = 0) < 0 with ¢ = 34.3mm
GMP101 19.33 —6.56/00 1.535 —16.9 | GPHI scaled to yield c = 34.4 — 17.1 mm
GRZ4 19.19 0]0]0 1.535 —11.3 | Size from outside dimensions and assumed X7
GRZ122 18.19 | 3.46|0]|2.45 1.700 —11.3 | D, XY and n adapted to outside dimensions and 8D =0°

4 Except for GRZ122 the refractive index of BK7 glass according to Riieger, 1996 was used. Only the group index for the
EDM wavelength of the TS60 is reported here. For GRZ122 n was assumed constant; according to Bernhard et al. (2008),
the actual value is likely even higher than 1.7.

b These are absolute prism constants; Leica typically reports the constants relative to GPH1, i.e., ¢ 4+ 34.4mm.
¢ 6D = 0 indicates the average distance deviation over 360 deg rotation of the vertical prism, with ¢ = —11.3mm.

Lienhart (2016). Such errors can almost certainly not be predicted with sufficient accuracy for
compensation, but the model can be used to identify the AOI and the principal point on each
prism of the reflector and thus to detect situations in which large deviations are more likely
than in others; this can be used as an information for weighting observations in subsequent
processing.

We used an industrial robot for measurements with a Leica GRZ122 reflector tilted from —35 to
35deg (towards/away from the total station) and rotated between 0 and 355 deg about the tilted
axis. The distance was about 25m. The reference point R remained at the same height as the
total station for all orientations. Rotation and tilt were incremented in steps of 5Sdeg. Measure-
ments were carried out automatically at each orientation. For determining the deviations, each
pose of the 360-degree prism was revisited with the robotic arm and a standard round prism,
manually aligned in the direction of the total station. The deviations of the polar coordinates,
derived from these measurements, thus include the uncertainties of the reference measurements
and of the repeatability of the robotic arm (0.1 mm according to the specification).
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Fig. 6: Deviations (measured minus expected) of total station measurements on Leica GRZ122
for different tilt and rotation (left: measurements; right: forward model).

The results are visualized in fig. 6 (left). The circular repeatability of the deviation patterns with
prism rotation is plausible given the specific assembly of the six prisms on this reflector. It is
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obvious that the deviations in azimuth and zenith distance increase in magnitude with increasing
tilt, exceeding 6 mm in extreme cases.

Despite small differences, particularly in absolute magnitude, the predicted deviations from the
forward model, fig. 6 (right), match the empirical results well. The differences are likely due
to the simplifying assumptions regarding the total station’s measurement process, the geometry
and refractive index of the prism (see tab. 1), but also to remaining uncertainties of the experi-
mental measurements and chosen reference values. Nevertheless, the results indicate that it may
be possible to practically compensate a large part of the prism effects by numerical modeling.

4 Compensation of effects

The above theoretical and empirical models represent the deviations dp of the total station
measurements, in the sense ‘expected minus true’, as a function of the true coordinates (X%)tme
and orientation ()" of the reflector relative to the total station:

8p := [6D,8Hz, 8Zd)" = £ 7 5 ((xg)™e, (yh)™e). (8)

Given a reasonable approximation (y/’.)*P™ of the reflector’s orientation, the function f7 ¢ for
the specific (type of) reflector % and total station .7 can be used to mitigate the prism effects
on the measurements p"% output by the total station:

pcorr — praw _ fy,% ((Xﬁe)corr’ (Wz;)aprx>. (9)

It may be sufficient to evaluate eq. (9) with the reflector coordinates (x%)™", directly corre-
sponding to the raw total station measurements, instead of the ‘corrected’ ones, (Xﬁe)“’“, which
need p°" for calculation. However, a refined approach may need solving eq. (9) iteratively. The
necessary approximation of the reflector’s orientation can, e.g., be derived from the deliberate
choice how a reflector is oriented relative to the network points in a static set-up or from the
pose estimation of a kinematic platform on which the reflector is rigidly mounted.

The above models can also be used for weighting of total station observations within further data
processing, be it for geodetic network adjustment, for checking coordinates of individual points,
or for trajectory estimation. For this, the AOI and the location of the principal point I within
each prism’s front face can be used as indicators of the expected quality of the measurements.
Measurements obtained with AOIs at which outliers are likely, measurements with the LOS
intersecting the prism close to the edge between adjacent prisms of a 360-degree reflector, or
measurements obtained in configurations for which the model f & 4 is more uncertain, can be
downweighted relative to other observations.

5 Conclusions

The use of glass prisms as reflectors for total station measurements introduces systematic devia-
tions if the line-of-sight and the reflector are not perfectly aligned or if the additive constant does
not match the reflector and the carrier wavelength of the EDM. These effects have long been
known and studied. Herein, we presented an analytical forward model to predict the deviations
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for arbitrary reflectors and geometric configurations. The model can handle single-prism reflec-
tors as well as prism-assemblies like 360-degree reflectors. It can deal with arbitrary distance
and orientation of the reflector relative to the total station.

We have carried out measurements for the empirical determination of the deviations, stepwise
turning reflectors into various orientations. The model predicts the deviations—up to several
mm laterally and vertically—and their dependence on reflector orientation to within 1 mm or
better. However, its evaluation requires parameters typically not disclosed by the reflector man-
ufacturers, e.g., prism dimensions and refractive index, and it does not account for imperfections
of the prisms and reflector assembly, e.g., misalignments, inhomogeneities or scattering of light
at the edges. Finally, it also does not yet account for the actual measurement process within the
total station, e.g. the beam profiles and divergence, or the internal data processing.

Some of the above parameters can be inferred from experimental data with sufficient accuracy,
others would require individual calibration of the prism-total-station system, and some would
likely appear random or too variable in time for effective modeling. We will address this in the
future. Overall, we expect that forward modeling can be a viable and economically attractive
solution to mitigating prism effects, particularly for application cases where reflectors cannot
be carefully aligned towards the total station.
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