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1 Introduction  

Rapid urbanization places increasing demands on cities as well as municipalities regarding 
transport planning, traffic and flood risk management, environmental monitoring, and 
infrastructure maintenance. All these tasks require comprehensive, up-to-date information of 
the urban area. Developing adaptive solutions to tackle these challenges necessitates accurate, 
comprehensive, georeferenced geometric-semantic road-space data as well as spatially resolved 
environmental observations (e.g., particulate matter (PM) for air quality, precipitation level, 
noise profiling) across the city.  

However, current analog and spatial data sources are often sparse and outdated due to infrequent 
and fragmented update cycles. In the context of road-space mapping, available sources typically 
capture static features (e.g., manhole covers, trees, curbs) while omitting important areas such 
as parking lots, green strips, sidewalks, bike paths, and street furniture. Concurrently, 
environmental data are frequently collected by permanently installed measurement stations, 
which provide high-quality point measurements but do not adequately represent spatial 
variability across the entire urban area. Conventional data collection methods typically operate 
at discrete intervals (e.g., surveys every few years). However, they are not capable of 
maintaining the spatial and temporal resolution required for modern urban management and 
concepts such as Digital Twins. More cost-efficient approaches with higher temporal resolution 
would be desirable. Consequently, this motivates the development of an innovative and 
comparatively cost-effectively multi-sensor system for the systematic, regular and 
georeferenced collection of urban road-space and environmental data. 

The idea behind the FloMuSS (Fleet-Based Multi-Sensor System) presented in this article is a 
low-cost sensor platform that should be able to be mounted on municipal service vehicles (e.g., 
waste collection trucks) that traverse the entire road network regularly, thereby ensuring 
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comprehensive coverage of the urban area and high-frequency updates (Fig. 1). The platform 
should allow for the installation of various sensors to enable georeferenced data collection of a 
wide range of parameters in urban areas. 

In the underlying research project for the development of FloMuSS, we examine three 
exemplary use cases. 

1. Streetscape monitoring: Capturing and continuous updating of transport infrastructure 
to support future-oriented road planning and targeted traffic management 

2. Parking management: Improving the determination of parking space availability for 
dynamic traffic and parking space management 

3. Pluvial flood risk management: Enhancing precipitation runoff models and predictions 
of flood hotspots for preventive heavy precipitation management (e.g., consideration of 
break lines in road space) 

 
Fig. 1: Exemplary use cases in FloMuSS 

Effective utilization of captured data requires precise georeferencing 6-Degrees-of-Freedom 
(DOF) pose of the sensors over time. For a moving vehicle acting as a sensor carrier, this 
necessitates the calculation of a time-continuous 6-DoF trajectory. This article focuses on 
calculating this trajectory using low-cost sensors in complex urban environments. The 
contribution of this paper is fourfold. First, we derive and formalize the requirements for a low-
cost, vehicle-mounted multi-sensor system for urban streetscape acquisition in terms of 
positioning accuracy, spatial coverage, temporal resolution, and economic constraints. Second, 
we detail the system design and hardware integration, including sensor configuration and 
installation on municipal vehicles. Third, we present a robust real-time sensor fusion method 
that integrates Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), 
and images under degraded operating conditions such as prolonged GNSS signal loss and IMU 
data gaps. At last, we report results from test drives, analysing the quality of the estimated 
trajectories and dense point clouds under representative urban conditions and demonstrate the 
system’s applicability of the collected data for selected use cases. 
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2 Related Work  

Since this article focuses on the usability of mobile mapping systems (MMS) in urban areas, 
we review the topics of pose estimation for georeferencing in urban environments, 3D data 
acquisition (point clouds and from imaging), and the associated trade-offs between cost and 
update frequency.  

Although commercial LiDAR-based MMS utilize high-end scanners and precise navigation 
units to deliver centimeter-level 3D point clouds (Elhashash et al., 2022). However, their high 
acquisition and operational costs generally limit their deployment to one-off surveys or surveys 
conducted at longer temporal intervals, creating a data gap for applications like asset 
management and digital twin maintenance, which require high-frequency observations to detect 
changes over time. Consequently, there is a strong motivation for low-cost mapping concepts 
that trade ultimate geometric accuracy for higher temporal resolution and economic scalability. 

Image-based systems have emerged as a cost-effective alternative to LiDAR-centric platforms 
(Madeira et al., 2008; Frentzos et al., 2020). Beyond lower hardware costs, cameras provide 
rich RGB information crucial for semantic interpretation tasks, such as traffic-sign inventory 
and pavement classification, which can be automated via deep-learning pipelines. However, 
low-cost image-based MMS face specific challenges in urban environments. Purely vision-
based approaches are sensitive to illumination and texture-less surfaces, while low-cost Real-
Time Kinematic (RTK)-GNSS solutions suffer from signal blockage and multipath effects in 
“urban canyons”. 

To ensure accurate georeferencing under these conditions, multi-sensor fusion has become the 
standard solution. Integrating GNSS, IMU, and visual odometry allows for robust pose 
estimation even when individual sensors are degraded (Elhashash et al., 2022; Fan et al., 2025). 
Even with these technical advances, most existing multi-sensor systems need to rely on costly 
components and are designed for specialized survey vehicles. There remains a lack of truly 
scalable solutions designed for integration into existing municipal fleets, such as waste 
collection trucks, which offer a promising strategy to achieve exhaustive spatial coverage at 
marginal operational cost (Anjomshoaa et al., 2018). 

3 System Requirements 

The intended purpose of FloMuSS outlined in the introduction necessitates a system capable of 
operating across the entire urban road network. To address the gaps identified in the related 
work, the proposed system must adhere to specific requirements regarding scalability, real-time 
processing, and usability.  

• Sensing configuration (GNSS-IMU-Camera): Relying on GNSS alone is often 
insufficient in dense urban environments due to signal blockage and multipath effects, 
resulting in intermittent availability and degraded positioning quality. While higher-
grade IMUs can mitigate short GNSS outages, they increase system cost and still require 
exteroceptive constraints to bound drift over longer GNSS degradations. LiDAR-centric 
mobile mapping systems provide high-quality geometry but typically involve 
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substantially higher acquisition and operational costs, which limits update frequency 
and scalability for municipal fleet deployment. A camera-based approach offers a cost-
effective source of complementary exteroceptive information. It supports drift-limited 
motion estimation when GNSS quality is poor, provides texture and appearance cues 
relevant for municipal inventory tasks (e.g., signage, lane markings, facade elements), 
and enables dense 3D reconstruction (point clouds) as a geometric data product when 
deployed as a stereo setup. We therefore adopt a GNSS–IMU–Camera configuration 
that balances robustness, cost, and information content. 

• Modular sensor scalability: The system architecture must be sensor-agnostic to support 
diverse mapping tasks. The core configuration is based on GNSS-IMU-Camera sensing 
to capture RGB imagery and derive 3D point clouds. The design must also support the 
modular integration of environmental sensors, such as electrochemical gas arrays 
(measuring 𝑃𝑃𝑃𝑃2.5, 𝑁𝑁𝑁𝑁𝑥𝑥) or spectral acoustic monitors for urban noise profiling, without 
altering the fundamental positioning framework.  

• Real-time georeferencing: Integrating these platforms into active municipal workflows 
imposes specific processing requirements regarding real-time capability. Unlike post-
processing techniques, the system requires an immediate georeferencing solution. A 
real-time estimation framework enables time-continuous pose estimation and 
immediate spatial registration of the captured road-space and environmental sensor 
streams, facilitating live streetscape monitoring (e.g., real-time pollution heatmaps) as 
well as downstream dense point-cloud generation. In this context, adopting a tightly 
couple GNSS-IMU-VSLAM (Visual Simultaneous Localization and Mapping) 
architecture is key to achieving real-time georeferencing under dynamic operating 
conditions. By leveraging temporal coherence and tight inertial coupling, VSLAM 
effectively rejects dynamic outliers, such as moving traffic and pedestrians, that 
typically degrade the global reconstruction techniques applied in standard Structure-
from-Motion (SfM) solutions.  

• Operational integration: Finally, to ensure economic viability, the system must be 
designed for "plug-and-play" deployment on non-specialized municipal vehicles. This 
dictates a low-maintenance form factor that minimizes post-processing efforts and does 
not interfere with the primary duties of the service vehicle (e.g., waste collection trucks).  

4 System Configuration and Hardware Integration 

To address the requirements, we developed FloMuSS as a modular, low-cost (~5,000 €) multi-
sensor system. The setup prioritizes hardware-level synchronization, scalability, and robustness 
for deployment on municipal vehicles. 

The core unit comprises two Stereolabs ZED X One global-shutter cameras forming a forward-
looking stereo pair. Equipped with an Onsemi AR0234 sensor, each camera delivers a 
resolution of 1928 (𝐻𝐻) × 1200 (𝑉𝑉) at a frame rate of 60 frames per second (fps). The optics 
feature a 2.2 mm focal length lens, providing a broad field of view of 110°(𝐻𝐻) × 79.6°(𝑉𝑉), 
ideal for environmental perception. Each camera includes a factory-calibrated 6-axis IMU, 
eliminating the need for manual camera-IMU calibration. The IMU consists of an accelerometer 
with a measurement range of ±12 g (resolution: 0.36 mg) and a gyroscope capable of 



332 Chen et al. 

measuring ±1000 (degrees per second) dps (resolution: 0.03dps). Data is transmitted via 
automotive-grade GMSL2 cables to a quad capture card and processed by an NVIDIA Jetson 
AGX Orin. For positioning, a Drotek DP0601 RTK-GNSS receiver (based on the u-blox ZED-
F9P module) is integrated. This multi-band receiver provides real-time PVT (Position, 
Velocity, Time) data at a maximum update rate of 8 Hz, along with a Pulse-Per-Second (PPS) 
signal. The PPS disciplines the Jetson’s system clock (PTP master), which triggers the cameras.  

The sensors are mounted on a rigid aluminum rail with adjustable sliders for baseline 
configuration (Fig. 2). The GNSS antenna is centered between the cameras to minimize lever-
arm effects, and cameras are protected by 3D-printed housings. The integration of further 
sensors, e.g., for environmental data like air quality is possible. The system is installed on the 
roof of a municipal garbage vehicle using a detachable base plate (Fig. 3), ensuring an 
unobstructed field of view. Power is drawn from the truck's 12V socket via a DC/DC converter, 
facilitating rapid installation without modifying vehicle wiring. A right-handed vehicle-fixed 
coordinate system is defined at the left camera, which serves as the base for the following 
calibration, trajectory estimation and dense point cloud generation. 

 
Fig. 2: System integration on the aluminum mounting rail. 

 
Fig. 3: System deployment on the municipal garbage vehicle. 

5 Methodology 

For FloMuSS, the determination of the current pose of the sensors mounted on moving carrier 
vehicles over time in a globally defined coordinate reference system (e.g., in the UTM 
coordinate reference system) is a fundamental prerequisite. This requirement necessitates the 
robust estimation of the 6-DoF camera trajectory, which serves as the spatio-temporal reference 
for aligning the sensor data. To ensure continuous and accurate georeferencing of this multi-
modal data under complex real-world conditions, we developed the GNSS-IMU-VSLAM 
fusion pipeline for real-time camera pose estimation.  

5.1 System States for Sensor Fusion Framework 

The objective is to estimate a time-continuous 6-DoF pose for the vehicle body frame ℱ𝒷𝒷, 
defined here to coincide with the left camera (ℱ𝒸𝒸ℒ). We utilize a local East-North-Up (ENU) 
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navigation frame ℱ𝓃𝓃, with the origin set at the initial GNSS/RTK fix. The minimal state vector 
at time 𝑡𝑡𝑘𝑘 is defined as 𝑥𝑥𝑘𝑘

pose = [𝑝𝑝𝑘𝑘𝑛𝑛,  𝜃𝜃𝑘𝑘]𝑇𝑇, where 𝑝𝑝𝑘𝑘𝑛𝑛 ∈ 𝑅𝑅𝟛𝟛 is the position and 𝜃𝜃𝑘𝑘 is the unit 
quaternion representation of the rotation matrix 𝑅𝑅𝑏𝑏,𝑘𝑘

𝑛𝑛 ∈ 𝑆𝑆𝑆𝑆(3). Given the estimated body pose, 
the poses of the right camera (ℱ𝒸𝒸ℛ) and the GNSS antenna phase center (ℱℊ) are derived via 
fixed, known extrinsic calibrations.  

5.2 Real-Time Pose Estimation via GNSS-IMU-VSLAM Fusion 

Our implementation builds upon the GNSS-stereo-inertial solution (Cremona et al., 2023), an 
extension of ORB-SLAM3 (Campos et al., 2021), adapting it specifically for the urban 
operational domain. A critical distinction of our system is the optionality of the inertial stream. 
Our system is designed to operate as a stereo-only GNSS-VSLAM when inertial data are 
unavailable, with potentially reduced robustness and accuracy compared to the full GNSS-
IMU-VSLAM configuration. It automatically upgrades to a full GNSS-IMU-VSLAM 
configuration when valid IMU readings are detected. GNSS measurements are introduced as 
unary factors in this optimization, ensuring that global position observations continuously 
correct the local map drift and the pose estimate. To incorporate global positioning, GNSS 
measurements, first transformed into the ENU frame ℱ𝓃𝓃, must be associated with the visual 
keyframes. We employ a temporal proximity association strategy similar to (Cremona et al., 
2023). Let 𝑡𝑡𝑖𝑖 denote the timestamp of the 𝑖𝑖-th keyframe and 𝑝𝑝𝑔𝑔�(𝑡𝑡) represent the continuous-
time GNSS antenna position, for each assigned keyframe, we query the closest GNSS 
measurement in time. The measurement is associated with keyframe-𝑖𝑖 if the absolute time 
difference is within a rigorous tolerance threshold 𝛥𝛥𝑡𝑡gnss: �𝑡𝑡𝑖𝑖 − 𝑡𝑡gnss� < 𝛥𝛥𝑡𝑡gnss, and the 
keyframe-𝑖𝑖 is added to the subset ℐgnss, otherwise, the keyframe remains unconstrained by 
global positioning. This selective association prevents stale or asynchronous GNSS data from 
corrupting the tightly coupled optimization. 

Following the coordinate definitions, the full state vector 𝑥𝑥𝑖𝑖 for the keyframe-𝑖𝑖 in the backend 
optimization includes the navigation states and the inertial biases: 

𝑥𝑥𝑖𝑖 = �𝑞𝑞𝑏𝑏,𝑖𝑖
𝑛𝑛 ,   𝑝𝑝𝑖𝑖𝑛𝑛,  𝑣𝑣𝑖𝑖𝑛𝑛,  𝑎𝑎bias,𝑖𝑖

𝑏𝑏 ,  𝜔𝜔bias,𝑖𝑖
𝑏𝑏 �

𝑇𝑇
 (1) 

where 𝑝𝑝𝑖𝑖𝑛𝑛 and 𝑣𝑣𝑖𝑖𝑛𝑛 are the position and linear velocity of the vehicle body frame expressed in 
ℱ𝓃𝓃, and 𝑞𝑞𝑏𝑏,𝑖𝑖

𝑛𝑛  is the unit quaternion representing the rotation 𝑅𝑅𝑏𝑏,𝑖𝑖
𝑛𝑛 . The terms 𝑎𝑎bias,𝑖𝑖

𝑏𝑏  and 𝜔𝜔bias,𝑖𝑖
𝑏𝑏  

denote the slowly time-varying biases for the accelerometer and gyroscope, respectively.  

We construct a factor graph optimization problem over a local window of keyframes ℐ and the 
set of visible 3D landmarks 𝒥𝒥. The optimization targets the keyframe states {𝑥𝑥𝑖𝑖}𝑖𝑖∈ℐ and 
landmark positions {𝑚𝑚𝑗𝑗}𝑗𝑗∈𝒥𝒥, where 𝑚𝑚𝑗𝑗  ∈ 𝑅𝑅𝟛𝟛. The total cost function is a sum of visual, inertial, 
and global positioning residuals. The local bundle adjustment is formulated as: 
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{𝑥𝑥𝑖𝑖∗,𝑚𝑚𝑗𝑗
∗} =  arg min

{𝑥𝑥𝑖𝑖},{𝑚𝑚𝑗𝑗}
( � 𝜌𝜌vis

(𝑖𝑖,𝑗𝑗)∈𝒪𝒪

 (𝑟𝑟𝑖𝑖𝑖𝑖vis  𝑇𝑇 Σ𝑖𝑖𝑖𝑖vis  −1 𝑟𝑟𝑖𝑖𝑖𝑖vis)   

+  � 𝜌𝜌imu
(𝑖𝑖,𝑖𝑖−1)∈ℐimu

 (𝑟𝑟𝑖𝑖,𝑖𝑖−1imu  𝑇𝑇 Σ𝑖𝑖,𝑖𝑖−1imu  −1 𝑟𝑟𝑖𝑖,𝑖𝑖−1imu )

+  � 𝜌𝜌gnss
𝑖𝑖∈ℐgnss

 (𝑟𝑟𝑖𝑖
gnss  𝑇𝑇 Σ𝑖𝑖

gnss  −1 𝑟𝑟𝑖𝑖
gnss)) 

(2) 

where 𝜌𝜌(⋅) denotes robust loss functions employed to downweight outliers. The visual residual 
𝑟𝑟𝑖𝑖𝑖𝑖vis encodes the reprojection error of a landmark-𝑗𝑗 observed in keyframe-𝑖𝑖. It is defined as the 
difference between the observed stereo coordinate 𝑢𝑢𝑖𝑖𝑖𝑖 and the projection of the landmark: 

𝑟𝑟𝑖𝑖𝑖𝑖vis  =  𝑢𝑢𝑖𝑖𝑖𝑖  −  𝜋𝜋�𝑇𝑇𝑐𝑐𝐿𝐿,𝑖𝑖
𝑛𝑛 −1 𝑚𝑚𝑗𝑗� (3) 

where 𝜋𝜋(⋅) is the stereo pinhole projection function and 𝑇𝑇𝑐𝑐𝐿𝐿,𝑖𝑖
𝑛𝑛  is the left camera pose derived 

from the body frame states. The information matrix Σ𝑖𝑖𝑖𝑖vis is scaled by the feature extraction scale 
level, adhering to the standard ORB-SLAM3 formulation. 

When valid IMU data is available between consecutive keyframes 𝑖𝑖 − 1 and 𝑖𝑖, we employ 
preintegration theory to synthesize a relative motion constraint. The residual 𝑟𝑟𝑖𝑖,𝑖𝑖−1imu  penalizes 
deviations between the pre-integrated relative measurements (rotation, velocity, and position 
increments) and the estimates predicted by the states 𝑥𝑥𝑖𝑖−1 and 𝑥𝑥𝑖𝑖. The covariance Σ𝑖𝑖,𝑖𝑖−1imu  is 
derived by propagating the continuous-time accelerometer and gyroscope noise densities 
through the integration period. If IMU data is missing, the set ℐimu is empty, effectively reducing 
to a visual-GNSS bundle adjustment. 

The GNSS residual enforces consistency between the estimated body pose and the raw position 
measurement provided by the receiver. This factor accounts for the lever arm offset 𝑟𝑟𝑔𝑔𝑏𝑏: 

𝑟𝑟𝑖𝑖
gnss = 𝑝𝑝𝑔𝑔,𝚤𝚤

𝑛𝑛� − �𝑝𝑝𝑖𝑖𝑛𝑛 + 𝑅𝑅𝑏𝑏,𝑖𝑖
𝑛𝑛 𝑟𝑟𝑔𝑔𝑏𝑏� (4) 

Specially, the covariance  Σ𝑖𝑖
gnss is dynamic and it is populated using the reported horizontal and 

vertical accuracy metrics from the RTK-GNSS receiver at each epoch. This allows the 
optimization to naturally trust the visual-inertial odometry more when GNSS signal quality 
degrades and rely on GNSS when satellite visibility is high. 

6 Results and Discussion 

The primary goal of the proposed low-cost multi-sensor system and processing pipeline is to 
enable robust, city-wide georeferencing of data collected from regularly operating municipal 
fleet vehicles, including under challenging urban conditions such as GNSS degradation and 
partial sensor outages. Building on the resulting globally consistent pose estimates, we 
additionally derive georeferenced dense stereoscopic point clouds for urban inventory 
applications. Consequently, we evaluate the system not only just on trajectory metrics, but also 
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by assessing the consistency of the resulting point clouds against target structures (e.g., road 
edges, facades) overlaid on high-resolution orthophotos from Geoportal NRW1. 

6.1 MMS Reference System 

To conduct the evaluation, the FloMuSS system was rigidly mounted onto an eagle eye survey 
vehicle, which is already equipped with a commercial, high-resolution MMS (Fig. 4). In 3D 
point cloud data capturing projects for highways, eagle eye has demonstrated an absolute 
accuracy of 1 cm in position and height at driving speeds of up to 100 km/h. Given the superior 
accuracy of the MMS’s high-grade solution, which claims centimeter-level global accuracy, its 
trajectory serves as the ground truth reference. However, because the sensors are mounted at 
different positions on the vehicle roof, the raw trajectories are not directly comparable. To 
resolve this, the MMS ground truth trajectory was spatially transformed into the coordinate 
system of the FloMuSS left camera. This transformation uses pre-calibrated extrinsic 
parameters to rigorously account for the 3D lever-arm effect and boresight alignment, ensuring 
that the evaluation measures algorithmic performance rather than spatial offsets. 

 
Fig. 4: Eagle eye MMS reference system plus FloMuSS low-cost system 

6.2 Performance of GNSS-IMU-VSLAM Fusion 

The GNSS-IMU-VSLAM pipeline was evaluated using data recorded in May 2025 in 
Herzogenrath, Germany. Fig. 5 visualizes the trajectories of the left (magenta) and right 
(orange) cameras alongside the GNSS antenna (green), and depicts a segment with dense 
roadside vegetation causing significant GNSS signal disturbance. While the GNSS receiver 
typically achieves centimeter-level accuracy in open areas, the canopy cover in this section 
causes the solution quality to deteriorate drastically, resulting in positioning errors of up to 3 
meters or total signal loss. Despite this extreme volatility, the fused camera trajectories remain 
smooth and accurately aligned with the road axis, maintaining the correct lever-arm offset from 
the antenna. This demonstrates the system's ability to bridge short periods of GNSS degradation 
using visual-inertial constraints. Specifically, for the quantitative analysis, we evaluated the 
above-mentioned trajectory segment with a total length of 150 m. Within this section, the 
system achieved a positioning accuracy of 0.15 m Root Mean Square Error (RMSE) relative to 
the eagle eye MMS ground truth. 

                                                 
1 https://www.geoportal.nrw/ 
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Fig. 5: GNSS-IMU-VSLAM under GNSS signal degradation. 

6.3 3D Dense Point Cloud Generation 

To evaluate the quality of camera data for geometric measurements or change detection, Multi-
view Stereo (MVS) technique was used to reconstruct 3D dense point cloud from recorded 
stereo images. The photogrammetric alignment was initialized with precise camera poses 
derived from the GNSS-IMU-VSLAM fusion. This external trajectory integration is essential 
to bridge GNSS-denied zones, where relying on standard photogrammetric alignment in these 
areas would result in significant absolute position shifts or incomplete reconstruction. 
Furthermore, utilizing these predefined camera constraints accelerates the pipeline by removing 
the need for the computationally intensive initial alignment step.  

Fig. 6 illustrates the cloud-to-cloud differences to a reference 3D point cloud from the eagle 
eye MMS, using a color-coded representation. Deviations in particularly relevant areas, such 
as the road surface, are predominantly below 0.05 m. Points located farther from the stereo 
cameras (e.g., facades and roofs) exhibit larger deviations of approximately 0.1-0.3 m. A 
quantitative comparison along a representative cross section is shown in Fig. 7, highlighting 
the vertical agreement between the reconstructed and reference point clouds. 

 
Fig. 6: Cloud-to-cloud distance between the 3D point cloud reconstructed from georeferenced stereo 

images and the reference point cloud from the eagle eye MMS in Herzogenrath. 
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Fig. 7: Cross-sectional comparison of the reconstructed 3D point cloud (red) and the reference eagle 

eye MMS point cloud (blue) along a representative road segment. 

6.4 Evaluation of Dense Point Cloud for the Exemplary Use Cases 

The usability of the derived 3D point cloud data for the exemplary use cases depends on the 
system's ability to recognize and map specific objects in the street environment: 

• Road Geometry: Detection of curbs, lane markings, and surface types. 
• Objects & Furniture: Classification of traffic lights, bollards, and street furniture. 
• Parking Semantics: Identification of parked vehicles and interpretation of regulatory 

signage. 
• 3D Topology / digital surface and terrain models (DSM/DTM): High-precision height 

measurement of vertical break edges for hydraulic analysis. 

We evaluated the data quality of the resulting 3D point clouds based on four key indicators: 

• Completeness: The completeness of all objects of a category along the captured road 
section. 

• Differentiability: The ability to distinguish distinct features within the data. 
• Geometric Accuracy: The magnitude of deviations in location or size of an object. 
• Homogeneity: The consistency of data quality for a certain object category along the 

captured road section. 

To ensure practical relevance, these indicators were tested on critical road infrastructure 
features, including curbs, curb ramps, roadway boundaries, road markings, traffic signs 
(including text legibility), and stationary vehicles. The assessment was performed via manual 
visual inspection of the 3D point clouds generated from identical road segments, selected for 
their diverse infrastructure and varying cross-sections. For each indicator, specific objects were 
compared side-by-side between the FloMuSS sensor and the eagle eye MMS. The evaluation 
accounts for the different sensing modalities: RGB color fidelity is used for both the MMS and 
the vision-based FloMuSS system, while LiDAR reflection intensity is only available for the 
MMS. For the pluvial flood risk management scenario, the evaluation assessed whether the 
point clouds' geometric accuracy and spatial resolution are sufficient for generating DTM. 
Validation involved visual comparisons at hydraulically challenging locations to test the 
differentiability of key features. The analysis specifically focused on determining if flow-
impeding structures (e.g., walls) and terrain elevation differences could be reliably 
distinguished from temporary elements, such as vehicles. 
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Using the eagle eye high-end MMS as the reference system for benchmarking, the FloMuSS 
system was found to be suitable for the targeted conceptual road planning, traffic management 
and parking management use cases. In terms of completeness, the eagle eye MMS performed 
considerably better than the low-cost system as expected. The latter exhibited gaps in the 3D 
point cloud that resulted in some objects being missed entirely. Due to variations in the presence 
and density of point clouds, the homogeneity of object detection in the low-cost system has 
room for improvement. Regarding differentiability, the data quality of the low-cost system was 
much closer to that of the reference system. Moderate weaknesses were observed in the 
detection of traffic signs and in identifying the boundary between the road surface and the 
shoulder. In these cases, the features were sporadically not distinguishable from the 
background. The geometric accuracy of the FloMuSS system, which is predominantly below 
0.05 m in the relevant areas (see Section 6.3), proved to be sufficient for conceptual road 
planning, traffic and parking management use cases, for which a very high accuracy is generally 
not required. Minor disadvantages compared to the reference system arise from the lower point 
density, which complicates the precise determination of object dimensions, such as those of 
curbs. Overall, the processing and interpretation of raw point cloud data remain challenging for 
road planning and traffic management practitioners. This highlights the need for more 
standardized and user-friendly data representations, as well as for automated object detection 
and classification methods, which will be addressed in future work. 

For the pluvial flood risk management use case, the evaluation focused on assessing whether 
the spatial resolution and geometric accuracy of the 3D point clouds are sufficient for generating 
DTMs. Sensor data from all three systems were visually compared at hydraulically challenging 
locations. The analysis examined the ability to distinguish terrain elevation differences, flow-
impeding structures such as walls and curbs, and temporary objects like parked vehicles. The 
results indicate that the generated 3D point clouds provide an adequate basis for DTM 
generation in urban street environments, supporting flood hotspot identification and hydraulic 
analysis. For further flood-related applications that require higher resolution, data from a high-
end MMS is still needed. 

7 Conclusion and Outlook 

This study demonstrates that the proposed FloMuSS system and sensor-fusion based processing 
pipeline enable reliable georeferencing of vehicle-borne sensor data even under challenging 
urban conditions, including GNSS signal loss and IMU temporal data gaps. By integrating 
GNSS, IMU, and visual information within a real-time GNSS-IMU-VSLAM processing 
pipeline, robust camera trajectories and globally referenced 3D point clouds can be obtained 
from data collected by regularly operating municipal fleet vehicles. 

This paper presented a pipeline that utilizes a real-time GNSS-IMU-VSLAM framework. The 
selection over pure SfM was motivated by two factors: 

• Dynamic robustness: VSLAM leverages temporal coherence and tight inertial coupling 
to effectively reject dynamic outliers (e.g., moving traffic, pedestrians) that typically 
degrade global reconstruction technique applied in SfM. 
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• Capability for live monitoring: The real-time estimation enables immediate 
georeferencing of the environmental sensor streams, facilitating live streetscape 
monitoring (e.g., real-time pollution heatmaps) rather than post-process analysis. 

The results for the exemplary use cases show that FloMuSS system can provide a viable and 
up-to-date data basis for urban street-space management. While the resulting point cloud quality 
does not fully match that of high-end MMS, the achieved accuracy and spatial resolution are 
sufficient for conceptual road planning and traffic management tasks, where very high 
geometric accuracy of the order of 1-2 cm is often not required. Furthermore, the approach also 
shows strong potential for pluvial flood risk management. The continuous acquisition of dense 
point clouds provides a suitable basis for generating DTMs and identifying flow-impeding 
structures in urban environments. However, when higher resolutions and accuracies are 
required for pluvial flood risk management tasks, the use of high-end MMS remains essential 
and sensible. 

However, while the system effectively handles GNSS outages and partially missing IMU data, 
the reliance on sequential estimation reveals a susceptibility to irregular image acquisition rates 
and temporal data gaps. These operational irregularities can destabilize the real-time fusion 
pipeline. In addition, when inertial measurements are unavailable for extended periods, the 
estimation can remain feasible in a stereo-only configuration, but typically with reduced 
accuracy and robustness (e.g., increased drift and less stable heading). For such segments, post-
processed, globally consistent reconstruction and trajectory refinement can be advantageous. 
To address these, future development will focus on integrating supplementary global 
optimization strategies. These post-processing mechanisms can serve as a robustness fallback, 
designed to bridge temporal gaps and recover trajectories in data segments where standard 
sequential tracking assumptions are violated.  

Nevertheless, the availability of dense 3D point clouds alone is insufficient to generate direct 
operational value. At present, the system primarily produces raw 3D point cloud data, which 
places a significant processing burden on municipal practitioners and limits seamless 
integration into existing planning workflows. To fully exploit the potential of continuous, fleet-
based sensing, the data must be transformed into standardized and semantically enriched object 
layers, such as curbs, lane boundaries, parking spaces, or regulatory signage, allowing users to 
work with meaningful, planning-relevant information rather than unstructured geometry. 
Achieving this transformation requires robust and automated workflows for object detection, 
segmentation, and classification. Automation is essential to ensure consistent data quality, 
reproducibility, and cost efficiency, and to enable frequent updates of street-space inventories 
with minimal manual effort. Future work should therefore focus on scalable analysis pipelines 
and interoperable data standards that translate continuously collected multi-sensor data into 
actionable information for municipal planning and pluvial flood risk mitigation, thereby 
improving the suitability of the resulted geometric–semantic urban data for applications such 
as urban digital twin generation. 
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