Hauptmenü
  • Autor
    • Bazarova, Alina
    • Berkes, István
    • Raseta, Marko
  • TitelOn trigonometric sums with random frequencies
  • Datei
  • LicenceCC BY
  • ZugriffsrechteCC-BY
  • Download Statistik1766
  • Peer ReviewNein
  • AbstractWe prove that if \(I_k\) are disjoint blocks of positive integers and \(n_k\) are independent random variables with uniform distribution on \(I_k\) , then \(N^{−1/2} Σ^N_{k=1} (sin 2πn_k x − \mathbb{E}(sin 2πn_k x))\) has, with probability 1, a mixed Gaussian limit distribution relative to the interval (0, 1) equipped with Lebesgue measure. We also investigate the case when n k have continuous uniform distribution on disjoint intervals \(I_k\) on the positive axis.