- Autor
- Bazarova, Alina
- Berkes, István
- Raseta, Marko
- TitelOn trigonometric sums with random frequencies
- Datei
- LicenceCC BY
- Download Statistik1766
- Peer ReviewNein
- AbstractWe prove that if \(I_k\) are disjoint blocks of positive integers and \(n_k\) are independent random variables with uniform distribution on \(I_k\) , then \(N^{−1/2} Σ^N_{k=1} (sin 2πn_k x − \mathbb{E}(sin 2πn_k x))\) has, with probability 1, a mixed Gaussian limit distribution relative to the interval (0, 1) equipped with Lebesgue measure. We also investigate the case when n k have continuous uniform distribution on disjoint intervals \(I_k\) on the positive axis.