Processing math: 87%
- Autor
- Berkes, István
- Tichy, Robert
- TitelThe Kadec-Pelczynski theorem in Lp , 1≤p2
- Datei
- DOI10.1090/proc/12872
- Erschienen inProceedings of the American Mathematical Society
- Band144
- Erscheinungsjahr2016
- Heft5
- Seiten2053-2066
- LicenceCC BY
- ISSN1088-6826


- Download Statistik73
- Peer ReviewJa
- AbstractBy a classical result of Kadec and Pe lczynski (1962), every normalized weakly null sequence in Lp , p>2 contains a subsequence equivalent to the unit vector basis of l2 or to the unit vector basis of lp . In this paper we investigate the case 1≤p<2 and show that a necessary and sufficient condition for the first alternative in the Kadec-Pelczynski theorem is that the limit random measure μ of the sequence satisfies ∫_{\mathbb{R}} x^2 dμ(x) ∈ L^{p/2} .