- Autor
- Jean-Quartier, Claire
- Jeanquartier, Fleur
- Cemernek, David
- Holzinger, Andreas
- TitelTumor Growth Simulation Profiling
- Datei
- Persistent Identifier
- Erscheinungsjahr2016
- Seiten208-213
- LicenceCC-BY
- Download Statistik1716
- Peer ReviewJa
- AbstractCancer constitutes a condition and is referred to a group of numerous different diseases, that are characterized by uncontrolled cell growth. Tumors, in the broader sense, are described by abnormal cell growth and are not exclusively cancerous. The molecular basis involves a process of multiple steps and underlying signaling pathways, building up a complex biological framework. Cancer research is based on both disciplines of quantitative and life sciences which can be connected through Bioinformatics and Systems Biology. Our study aims to provide an enhanced computational model on tumor growth towards a comprehensive simulation of miscellaneous types of neoplasms. We create model profiles by considering data from selected types of tumors. Growth parameters are evaluated for integration and compared to the different disease examples. Herein, we describe an extension to the recently presented visualization tool for tumor growth. The integration of profiles offers exemplary simulations on different types of tumors. The enhanced bio-computational simulation provides an approach to predicting tumor growth towards personalized medicine.