Hauptmenü
  • Autor
    • Seeber, Richard
    • Horn, Martin
  • TitelOptimal Lyapunov-Based Reaching Time Bounds for the Super-Twisting Algorithm
  • Datei
  • DOI10.1109/LCSYS.2019.2920163
  • Persistent Identifier
  • Erschienen inIEEE Control Systems Letters
  • Band3
  • Erscheinungsjahr2019
  • Heft4
  • Seiten924-929
  • LicenceCC BY-NC-ND
  • ZugriffsrechteCC-BY
  • Download Statistik201
  • Peer ReviewJa
  • AbstractThe super-twisting algorithm is a second order sliding mode control law commonly used for robust control and observation. One of its key properties is the finite time it takes to reach the sliding surface. Using Lyapunov theory, upper bounds for this reaching time may be found. This contribution considers the problem of finding the best bound that may be obtained using a family of quadratic Lyapunov functions. An optimization problem for finding this bound is derived, whose solution may be obtained using semidefinite programming. It is shown that the restrictions imposed on the perturbations and the conservativeness of the obtained bound are significantly reduced compared to existing results from literature.