Hauptmenü
  • Autor
    • Vašatko, Hana
    • Gosch, Lukas
    • Jauk, Julian
    • Stavric, Milena
  • TitelBasic Research of Material Properties of Mycelium-Based Composites
  • Datei
  • DOI10.3390/biomimetics7020051
  • Erschienen inBiomimetics
  • Band7
  • Erscheinungsjahr2022
  • Heft2
  • LicenceCC BY 4.0
  • ISSN2313-7673
  • ZugriffsrechteCC-BY
  • Download Statistik1032
  • Peer ReviewJa
  • AbstractThe subject of this research is growing mycelium-based composites and exploring their basic material properties. Since the building industry is responsible for a large amount of annual CO2 emissions, rethinking building materials is an important task for future practices. Using such composites is a carbon-neutral strategy that offers alternatives to conventional building materials. Yet, in order to become competitive, their basic research is still needed. In order to create mycelium-based composites, it was necessary to establish a sterile work environment and develop shaping procedures for objects on a scale of architectural building elements. The composite material exhibited qualities that make it suitable for compression-only structures, temporary assemblies, and acoustic and thermal insulation. The methodology includes evaluating several substrates, focused on beech sawdust, with two mycelium strains (Pleurotus ostreatus and Ganoderma lucidum), density calculations, compression tests, three-point flexural tests and capillary water absorption. The results of this study are presented through graphical and numerical values comparing material and mechanical properties. This study established a database for succeeding investigations and for defining the potentials and limitations of this material. Furthermore, future applications and relevant examinations have been addressed.