- Autor
- TitelExtreme values of derivatives of the Riemann zeta function
- Datei
- DOI10.1112/mtk.12130
- Erschienen inMathematika
- Band68
- Erscheinungsjahr2022
- Heft2
- Seiten486-510
- LicenceCC BY-NC-ND 4.0
- ISSN2041-7942
- Download Statistik1017
- Peer ReviewJa
- AbstractIt is proved that if π is sufficiently large, then uniformly for all positive integers π β©½ (log π)β(log2 π), we have \( \max_{πβ©½π‘β©½2π} π^{(l)} 1 + ππ‘| β©Ύ π^πΎ β
l^l β
(l + 1)^{β(l+1)} β
( log_2π βlog_3π +π(1)^{l+1}\) , where πΎ is the Euler constant. We also establish lower bounds for maximum of \(|π^{(l)}(π + ππ‘)|\) when π β β and π β [1β2, 1) are fixed. MSC (202 0 ) 11M06 (primary)