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Preface

When we discussed the date for the 2021 edition of the OAGM workshop, we already had the re-
scheduling and finally cancellation of the 2020 edition in our minds. At the time of our discussion
the shortage of COVID-19 vaccines was the dominant topic. Hence, when the decision between
September and November was due, we decided that the workshop should take place on November
24 and 25, 2021 at University of Applied Sciences St. Pölten. Looking back, September would have
allowed to hold the workshop as intended, namely To bring together researchers, students, profes-
sionals, and practitioners from the fields of Computer Vision and Pattern Recognition to present and
actively discuss the latest research and developments.

Given the fast development of the pandemic situation, we had to cancel the workshop at the beginning
of November. At this time, the review process was already finished. Consequently, it is possible to
publish the conference proceedings. We thank the authors and reviewers for their contributions to this
publication.

We received 21 original contributions of which 16 (10/12 full papers, 3/3 student papers, 3/6 spotlight
papers) have been accepted, resulting in an overall acceptance rate of 76%. Each contribution was
peer-reviewed in a double-blind process by at least two reviewers from an international program
committee. One outstanding contribution will be awarded a best paper prize sponsored by OCG. In
addition, there will be an IEEE Women in Engineering Award for the best contribution of a female
first author. We want to thank OCG and IEEE for sponsoring these awards and Land Niederösterreich
for the financial support of the unfortunately cancelled workshop and this publication. At the time of
its cancellation, the workshop program was already planned. We thank the invited speakers Andreas
Maier (FAU Erlangen-Nürnberg), Marc Pollefeys (ETH Zürich) and Markus Schedl (JKU Linz) for
their willingness to give a presentation.

We hope to see you in 2022 at the next edition of the OAGM workshop, stay healthy,

Markus Seidl and Matthias Zeppelzauer (conference chairs)
Peter M. Roth (publication chair)

St. Pölten, December 2022
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Evaluation of Monocular and Stereo Depth Data for Geometry-Assisted
Learning of 3D Pose

Andreas Kriegler 1,2, Csaba Beleznai 1 and Margrit Gelautz 2

Abstract— The estimation of depth cues from a single image
has recently emerged as an appealing alternative to depth
estimation from stereo image pairs. The easy availability of
these dense depth cues naturally triggers research questions,
how depth images can be used to infer geometric object and
view attributes. Furthermore, the question arises how the
quality of the estimated depth data compares between different
sensing modalities, especially given the fact that monocular
methods rely on a learned correlation between local appearance
and depth, without the notion of a metric scale. Further
motivated by the ease of synthetic data generation, we propose
depth computation on synthetic images as a training step
for 3D pose estimation of rigid objects, applying models on
real images and thus also demonstrating a reduced synth-to-
real gap. To characterize depth data qualities, we present a
comparative evaluation involving two monocular and one stereo
depth estimation schemes. We furthermore propose a novel
and simple two-step depth-ground-truth generation workflow
for a quantitative comparison. The presented data generation,
evaluation and exemplary pose estimation pipeline are generic
and applicable to more complex geometries.

I. INTRODUCTION

Recent scientific trends increasingly allow for an enhanced
spatial perception of a given environment and its actors. On
one hand, this is partly facilitated by the recent surge in
representational capacity and flexibility of learned represen-
tations. On the other hand, the emergence of enhanced depth-
sensing modalities such as high-quality stereo vision, monoc-
ular depth estimation, LiDAR, Radar offer new geometry-
encoding cues, which are highly invariant with respect to
view, appearance and photometric variations. These spatial
cues, along with appearance attributes, are often exploited in
robotic perception and interaction tasks, such as pose-aware
grasping and path planning.

3D object pose denotes the spatial transform needed to
align the coordinate reference of an observed object with
that of the observer. As depth data contains distinctive cues
linked to the sought translational and rotational object pose
parameters, in this paper we present a focused study on
examining the data quality of monocular and stereo depth
modalities in light of a learned pose estimation task.

A primary motivation of our work stems from the fact
that models trained on synthetic data often exhibit a severe

*This work was partially carried out in the HOPPER project, supported
by the “ICT of the Future” programme of the Austrian Research Promotion
Agency (FFG)

1Assistive and Autonomous Systems, Center for Vision Automation
and Control, AIT Austrian Institute of Technology, 1210 Vienna, Austria
{andreas.kriegler, csaba.beleznai}@ait.ac.at

2Visual Computing and Human-Centered Technology, TU Wien Informat-
ics, 1040 Vienna, Austria margrit.gelautz@tuwien.ac.at

Fig. 1. Overview of the various depth and surface normals generation
pipelines from synthetic and real data. Depth (computed surface normals)
from synthetic images is used for training a pose-aware detector, which is
tested on real images. Our proposed ground truth depth generation scheme
is used to generate reference depth/surface normals data.

degradation when facing the real data domain [8], or learning
requires a photorealistic pipeline [2] to close the gap between
simulated and real data. To mitigate this problem, we propose
depth computation from synthetic images, with the objective
to derive a representation exhibiting less synthetic qualities.
Depth data estimated from synthetic images (via monocular
or stereo estimation schemes), however, still might convey
specific characteristics, which limit generalization towards
real-world situations. Therefore, we propose a depth-data-
specific comparison based on the computed surface normals
to examine how quality discrepancies of different depth
modalities relate to each other. Furthermore, we also examine
the use of such training data with synthetic origins in
the context of learning 3D pose-aware detectors, as it is
described later on.

To support a quantitative comparison between the differ-
ent depth modalities, we also propose a novel quantitative
evaluation pipeline based on a simple ground truth gener-
ating procedure, yielding dense metric depth ground truth.
Comparison of monocular depth estimates to a metric depth
ground truth, however, is not straightforward due to the lack
of metric scaling. To this end we propose an object-centered
evaluation scheme, which compares computed surface nor-
mals at an object level and in a pixel-wise manner. Finally,
to validate that a given transition to depth data narrows
the synth-to-real gap, we present pose estimation experi-
ments purely trained on depth from synthetic imagery. These
experiments employ a baseline encoder-decoder-type pose
estimation methodology and cylindrical objects as training
and test objects. The presented data generation, evaluation
and pose estimation scheme, however, is generic and also

1
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applicable to more complex object geometries.
In summary, the paper proposes the following three con-

tributions:
• Ground truth generation: we introduce a novel and

generic annotation pipeline for computing dense and
accurate depth and pose data for a wide variety of real
scenes,

• Depth quality assessment: we propose a quantitative
assessment scheme, comparing monocular and stereo-
based estimates to ground truth via an object-centered
analysis of computed surface normals,

• Initial results for 3D pose estimation trained on syn-
thetic data: we demonstrate the feasibility of inferring
3D pose in real images via learned models trained on
monocular and stereo depth normals, estimated from
synthetic data.

The remainder of the paper is structured as follows: section
II gives an overview on related work. Section III describes
two data generation tasks: synthetic data generation for
learning and depth ground truth generation for evaluation,
both via Blender [3]. Section IV presents the proposed
depth quality evaluation scheme. Finally, section V shows
the applicability of a synthetic-data-based training pipeline
to learn and predict object poses in real and synthetic images.

II. RELATED WORK
Recent research activities targeting learned representa-

tions of geometric traits encompass a large set of works,
given that geometric shape and structure are intrinsic object
properties which are highly invariant for different viewing
and illumination conditions. This emerging field of geo-
metric deep learning is well summarized in [4], [5], where
geometric principles are highlighted to explain regularities
often observed in the physical world, i.e. gravitational or
right-angle structuring of man-made objects. Depth data
naturally conveys geometric information, therefore under-
standing depth computation, its data characteristics and its
failure modes are highly pertinent. [27] outlined four steps
commonly encountered in classical stereo image pipelines.
Despite representational advances via Deep Learning, these
steps continue to play a key role [37]. Depth estimation from
a single image, also denoted as monocular depth estimation,
has recently emerged as an appealing alternative to depth
estimation from stereo image pairs [36]. One of the first
methods was [11] who also introduced scale-invariant eval-
uation metrics to measure the quality of the estimated depth
maps. The proposed evaluation technique seeks an optimum
depth scaling best aligning estimated depth and ground truth,
a search step which is sensitive in presence of large depth
discrepancies. Later works have explored continuously im-
proving representations to learn a robust correlation between
the appearance of a scene and its geometry [13], [22], [21].
Some works [20] approached this learning task as part of a
multi-task learning scenario, where estimating the apparent
motion and scene depth (from the viewpoint of a mobile
observer) are formulated as two correlated and mutually-
supporting learning tasks. An enhanced generalization of

monocular depth models is attained via a mixture of datasets
in [24]. Recent representational advances based on vision
transformers [9], exploiting the attention-mechanism [32] are
capable to accurately capture long-range semantic relations
[23], see also [19] for a survey.

Nevertheless, the task of inferring absolute depth from
a single image is an ill-posed problem, most prominently
because of the prevailing scale ambiguity, making it un-
reliable in certain situations. These shortcomings lead to
the conclusion in [28] that stereo vision is still required
for accurate depth estimation, as stereo methods employ a
principled, well understood, multi-view processing frame-
work using concepts of the pinhole camera model [16]. In
stereo vision, ambiguities are generated from other sources.
In particular, stereo matching - that is, finding corresponding
points in two (or more) stereo images for disparity estimation
- is typically challenged by homogeneous image regions,
repetitive patterns, depth discontinuities and occlusions, and
particular surface reflectance properties. CNNs are known to
be very powerful feature extractors and multiple learning-
based deep neural network architectures exploit this capabil-
ity for enhanced feature matching of stereo images, such as
in [6], [12], [7]. AANet [34] provides a very good speed-
accuracy trade-off.

While both monocular and stereo-based depth reconstruc-
tion methods have their individual advantages and limita-
tions, one of the goals of our work is to provide a quantitative
comparison of the two approaches in the context of a geomet-
ric deep learning task. Research works having a similar data
characterization scope are still lacking. Although [28] pro-
vide a comparison between depths generated from monocular
frameworks vs. stereo-setups, it is largely qualitative, and it
does not use state of the art methods from the respective
fields. [24] proposes several dataset-specific metrics, which
are nevertheless difficult to relate across different datasets.

Finally, our paper is closely related to 3D object pose esti-
mation from appearance and/or depth cues. Representational
advances in recent years have resulted in an increasing ac-
curacy and robustness with respect to clutter, occlusions and
pose-ambiguous object types. This evolution is prominently
reflected in the BOP Challenge series [18]. This paper leans
on its resulting insights, that data availability and the domain
gap between synthetic training and real test often represent a
hurdle. These findings motivate us to devise data generation
schemes which yield data conveying spatial cues and better
bridge the domain gap.

III. GROUND TRUTH FOR DEPTH AND POSE

In the present data-driven era of Deep Learning, model
performance is closely linked to the quantity and quality of
training data [24]. The generation of synthetic data using
GANs [14] has proven successful, while the inclusion of
data from different sources such as YouTube videos [1] or
movie datasets [24] is gaining interest as well. Nevertheless,
the exploitation of frameworks commonly used in computer
graphics applications is still largely unexplored [25]. One
such program is Blender [3], which is commonly used to
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Fig. 2. Our proposed 3D object annotation pipeline yielding synthetically-correct per-pixel depth values and object 6DoF poses for real images captured
with an RGB camera. The pipeline comprises five steps: 1) Alignment of two sets of parallel lines (red and green) where the sets are orthogonal, forming the
ground plane. Additionally, a line segment of known length (blue) is set. 2) Creation of synthetic camera with estimated intrinsic and extrinsic parameters.
3) Camera and frames to be annotated are imported in Blender to create a synthetic twin of the scene. 4) Rendering of 16bit depth images. 5) Final
transform of depth maps to surface normal images.

render synthetic imagery based on modelled or procedurally-
generated scenes. In this work the use of the Blender
platform is two-fold: training data generation for learning
pose-aware object detectors, and 3D scene annotation for
generating dense depth ground truth. These functionalities
are explained in detail below:
Synthetic data generation: We procedurally generate a
large synthetic dataset (consisting of cylindrical objects)
along with 3D pose annotations. Diversity is introduced in
form of various spatial object configurations and varying
view parameters. We generate a rich set of object-specific
annotations in form of 6DoF pose parameters, metric object
dimensions, 2D bounding box, center point location and
occlusion indicators using ray-tracing. Example renders can
be seen at the top left side of Fig. 3, with textures randomized
for each view. Please note that texture plays only a minor role
as the RGB domain is not used directly for learning. Random
textures, on one hand, generate a notion of the governing
perspective and corresponding locations, thus facilitating the
task of monocular and stereo depth estimation. Furthermore,
random textures also introduce small-scale texture-induced
monocular depth artifacts, thus robustifying a learned model
with respect to locally corrupted depth/normal data. 56k of
such synthetic samples (resolution 768×512px) are used to
train and validate our object location and pose regression
models, as described in Section V.
3D scene calibration, ground-truth-depth generation:
Trained pose-aware models shall be evaluated on a real image
dataset. To this end, we capture 120 rectified stereo image
pairs using a Stereolabs ZED2 stereo camera [30] with a
resolution of 1920×1080px. Captured images depict four
different office environments (further on denoted as scenar-
ios) with a variable number of cylindrical objects lying on
a common ground plane. To generate a dense reconstruction

for all scenes with as little effort as possible, we rely on a
simple photogrammetric concept. We employ the technique
by Guillou et al. [15], requiring two vanishing points and a
line segment of known length. The two vanishing points can
be easily defined by two line pairs, pairwise orthogonal to
each other in the real world. Given these inputs, the camera
rotational and translational parameters can be determined,
along with its focal length. To perform the calibration and
scene reconstruction, we execute following steps:
• Calibration: for a given scenario, we assume a station-

ary camera mounted on a tripod. We create a blank
rectangular (cardboard) shape with at least one known
dimension to use as a calibration target (see Step 1 in
Fig.2). In the very first frame of a given scenario, the
edges of the calibration target can be used to manually
delineate two pairs of parallel line segments, yielding
the sought camera parameters. In later images of a
given scenario the target can be removed, since the
camera views remain stationary. The publicly available
fSpy toolkit [31] offers an interactive interface for the
calibration algorithm [15]. It also provides a Blender
camera generator functionality to create an equivalent
camera within Blender, adequately oriented, translated
and scaled, existing within a 3D space defined by the
line segments leading to the vanishing points.

• 3D scene annotation in Blender: in this step we would
like to spatially align a number of geometric objects
within the 3D metric space of the camera. Each image
of a scenario contains N (1< N <4) cylindrical objects,
randomly placed in a lying pose. We measure the
dimensions (length, radius) of these objects, in order
to create cylindrical primitives of the same metric size
in Blender. If objects are known to be on a common
ground plane, object dimensions are not necessary.

3
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Nevertheless, known dimensions significantly constrain
the possible pose space where placed 3D objects are
aligned with the apparent projections in the view seen
through the camera (Steps 2 and 3 in Fig.2). This step
also naturally leads to object pose attributes (orientation,
translation) with respect to the camera.

• Dense ground-truth-depth generation: after aligning all
3D objects within Blender, the scaled Z-depth informa-
tion can be rendered for the given scene. This depth
information contains the metric depth for every scene
point, similarly to a depth measurement via calibrated
stereo cameras. This step is executed programmatically
and produces float-valued depth entries for every image
point where camera rays hit a previously placed object
(see Step 4 in Fig.2). Note that a scaling factor is
introduced for visualization only.

The presented calibration and ground truth generation
scheme represents a straightforward annotation workflow
for 3D object pose and depth data. It is applicable for a
wide range of object geometries, scale ranges and arbitrary
viewpoints. A detailed documentation, sample scene and
code can be found at [url].

IV. EVALUATION OF MONOCULAR AND STEREO
DEPTH DATA

In this section we describe a data-oriented evaluation
methodology for three state-of-the-art depth estimation
schemes. Our comparison targets the quality evaluation of
structure-encoding surface normals (derived from the depth
data), in the context of representation learning for 3D pose
estimation. The three selected estimation schemes consist of
two monocular depth estimation methods MiDaS v2.1 [24]
and MiDaS v3.0 [23], and a stereo depth estimation model
AANet [34]. Further on, MiDaS v2.1, MiDaS v3.0 (using
the DPT large model) and AANet are denoted as MiDaS,
DPT and AANet for brevity.

MiDaS [24] is a CNN-based depth estimator using the
framework of [33] with a ResNet [17] backbone. It was
trained using up to ten different datasets, including 3D
movies, leveraging the large data quantity and diversity for
generalization. DPT [23] is a vision transformer trained for
multiple dense prediction tasks including depth estimation.
An argument for transformers is that they are able of
capturing long-range semantic relationships in images [9],
which should enforce stronger global structural consistency
in the depth results; a trait which is often lacking for CNN-
based monocular-depth frameworks [23]. Lastly, AANet [34]
consists of an adaptive aggregation model for multi-scale
disparity cost aggregation, resulting in an efficient stereo
matching scheme. We employ the AANet kitti2015+ model
which incorporates GANet [35] for feature matching.

A direct pixel-wise comparison between a monocular
depth estimate and a ground truth is not straightforward,
as monocular-depth frameworks generate disparity (inverse
depth) values with no metric scaling. Furthermore, different
monocular models yield disparity (depth) estimates with
substantially different scaling factors. Therefore, common

stereo vision evaluation metrics - assuming data living in a
metric space - cannot be applied. To overcome this problem,
we propose an object-centered scaling scheme performing a
normalization within object-specific regions. The objective
of this scaling step is to bring monocular, stereo and ground
truth depth data within object foreground regions into a scale-
normalized form. The input for this scaling is a depth image
Di, where i = {0,1,2} indicates ground truth, monocular and
stereo depth, respectively. A corresponding object foreground
mask m0 is also needed (generated via the ground truth
generation process) to spatially constrain the set of pixels
included into the normalization step. This mask contains
unit entries at all object locations, denoted as object mask
region mOb j

0 , and zeros elsewhere. The scaling operation is
performed as:

D∗i = Di / max(1,Di[m
Ob j
0 ]), (1)

resulting in D∗i , a scaled depth image containing unit-
normalized values within the object mask region. This subset
of normalized depth values is used exclusively for further
computation steps towards a quantitative comparison.

We adopt this object-foreground-based normalization pro-
cedure for ground truth, stereo and monocular depth data,
resulting in depth values within the object foreground regions
scaled to a common range. Instead of using the scaled depth
values for an evaluation, we investigate its spatial deriva-
tives, in form of surface normals. The choice of opting for
surface normals stems from a representational consideration:
when seeking to learn representations for objects situated at
varying distances from a camera, computed surface normals
exhibit less variation than depth data. We use a simple
procedure to transform depth images to surface normals. First
we calculate pixel intensity changes as derivatives dx and dy
using the Sobel kernel [29]. With the intensity gradients we
build local support planes, whose normal vectors can be seen
as the normal vectors of the object surface in those pixels.
As matrix norm we use the Frobenius norm. Since the Sobel
kernel size is a configurable parameter, most commonly 3×3,
5×5 or 7×7, we examine resulting surface normal quality
variations in this regard, and also include an alternative
Scharr 3x3 kernel [26]. Images of computed surface normals
are visualized by mapping the directional vector components
to respective 8-bit RGB channels. The 3D vectors of surface
normals are compared to ground truth in a pixel-wise manner
using a 3D cosine similarity, yielding a similarity score in
the range of [−1,1]. Vector similarity scores are mapped to a
[0,1] range and a cumulative score from all object foreground
regions is formed.

V. RESULTS AND DISCUSSION

In this section, we present results on comparing depth data
quality in terms of pixel-wise surface normal similarities with
respect to a corresponding ground truth. The comparison is
generated for a real dataset using the presented three (MiDaS,
DPT and AANet) depth computation modalities. In addition
to a quantitative evaluation, we also present qualitative results
on the depth quality and experimental outcomes for 3D pose
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estimation. In the following, we describe our dataset and
related evaluation results, followed by qualitative depth and
pose estimation results.
Dataset and evaluation results: our 120 real-image dataset
(see Section III) was captured using 4 distinct viewpoint
setups, each scene containing 30 random object configura-
tions. For each of the 120 images a corresponding depth
ground truth was computed. Table I displays surface normal
similarities computed from the MiDaS, DPT and AANet
methods with respect to the ground truth. The table also
shows the effect of the varying kernel-size used for surface
normal computation. The kernel size of -1 denotes the
Scharr, the other numbers relate to the Sobel kernel size.
As it can be seen from the table, the two monocular depth
estimation methods on an average produce very similar
quality. While DPT tends to produce more geometric detail,
in case of our targeted, smoothly varying surfaces it did
not lead to enhanced scores. On the other hand, the AANet
stereo matching scheme clearly outperforms the monocular
models in all cases. The elongated cylindrical objects are
long enough to call for the need of estimating accurate
far-range structural correlations; a trait where monocular
methods are still lacking behind the quality of the stereo
depth data. Monocular methods generate a spatially-smooth
output, where derivative kernels of increasing size deteriorate
the captured geometric details. Therefore, a small kernel
size of 3px seems to produce optimum results. AANet, on
the other hand, benefits from larger kernels, suppressing the
noise associated with the disparity estimation process.
Qualitative depth results: Fig. 3 displays a large set of
qualitative results, partially generated for synthetic renders
(Fig. 3 left half), partially for our real-image dataset. To
facilitate the interpretation of depth quality, besides false-
color depth images we also display two views of the point
cloud representing the given scene. As it can be seen
from the point cloud views, monocular depth estimation
is relatively accurate when considering it locally, but at a
large scale (especially near the image boundaries) significant
spatial deviations occur. This observation also implies that,
if pursuing an object detection or pose estimation task, local
depth cues from monocular estimation can provide valuable
hints, lifting many ambiguities associated with the monocular
nature of the view. However, for problems requiring a global
scale consistency, stereo pipelines still seem to be the more
accurate and less data-dependent choice.
Qualitative pose estimation results: To examine the influ-
ence of data quality onto a 3D pose estimation learning task,
we performed following experiments. Section III describes
our data generation step for learning. The synthetic data, as
single images or stereo pairs, are used within the respective
monocular (MiDaS, DPT) and stereo (AANet) pipelines to
generate depth data. The computed surface normals from
depth and corresponding pose annotations {class, 2D cen-
ter, depth, angular parameters} represent the input of our
learning scheme. Given these inputs, an encoder-decoder-
type framework (CenterNet [10]) was used to train depth-
modality-specific models for 3D pose estimation (see also

TABLE I
QUANTITATIVE COMPARISON OF SURFACE NORMALS COMPUTED USING

DEPTH CUES FROM THREE MODELS. (HIGHER IS BETTER).

k MiDAS v2.1[24] DPT Large[23] AANet[34]

Sc
en

e
1

-1 0.7861 0.7898 0.8801
3 0.7861 0.7898 0.8801
5 0.7846 0.7887 0.8888
7 0.7826 0.7870 0.8922

avg. 0.7849 0.7888 0.8853

Sc
en

e
2

-1 0.8596 0.8722 0.9291
3 0.8596 0.8722 0.9291
5 0.8579 0.8714 0.9362
7 0.8559 0.8702 0.9387

avg. 0.8583 0.8715 0.9333

Sc
en

e
3

-1 0.8382 0.8005 0.8930
3 0.8382 0.8005 0.8930
5 0.8364 0.7984 0.9012
7 0.8341 0.7958 0.9041

avg. 0.8367 0.7988 0.8978

Sc
en

e
4

-1 0.8650 0.8604 0.9212
3 0.8650 0.8604 0.9212
5 0.8630 0.8588 0.9294
7 0.8606 0.8567 0.9324

avg. 0.8634 0.8591 0.9261

Fig. 1). We observe fast convergence within 3-5 epochs.
We demonstrate the applicability of our process to learn

6DoF pose parameters from purely synthetic data and per-
form prediction in real images. Fig. 3 shows pose estimation
results (rows 6, 11 and 16) for the individual depth modali-
ties. As it can be seen from the figure, in the synthetic domain
results exhibit a high recall and a high pose estimation
accuracy. In the real domain, however, inference on surface
normals from monocular techniques shows several failure
modes, a lower recall and precision, in form of occasionally
hallucinating cylindrical objects within the nearby struc-
tural clutter. When using stereo-depth-based surface normals,
however, results improve. Recall is still lacking, but no
objects are hallucinated. Based on these results we believe
that spatial cues derived from synthetic images can represent
a way towards learning geometry-aware representations of
objects and pose, which also exhibit validity within the real
world.

VI. CONCLUSIONS

We present a geometrically-inspired depth data analysis
scheme comparing surface normal cues from monocular and
stereo-based pipelines, with object detection and 3D pose
estimation tasks in mind. To support the data evaluation
task, we propose a novel ground truth generation scheme,
where dense depth and pose data can be created with little
manual interaction. Our evaluations with respect to ground
truth indicate that stereo-depth prevails in terms of data
quality when compared to monocular depth, especially if
a long-range depth data consistency is required. However,
we demonstrate, that monocular depth still captures rele-
vant local geometric details, which is sufficient to learn
pose-aware object detectors from purely synthetic data. The
demonstrated transition from the synthetic to the real domain
seems to offer further geometry-aware analysis perspectives,
while exploiting monocular or stereo depth cues.
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Fig. 3. For the synthetic data domain (left) and real images (right) we visualize example input images as well as depth images, depth point clouds and
surface normals obtained using each of three depth estimation methods. The final rows for each model show CenterNet pose estimation results trained on
surface normals from the large-scale synthetic dataset.
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An Evaluation of the Machine Readability of Traffic Sign Pictograms
using Synthetic Data Sets*

Alexander Maletzky1, Stefan Thumfart1 and Christoph Wruß2

Abstract— We compare the machine readability of pic-
tograms found on Austrian and German traffic signs. To that
end, we train classification models on synthetic data sets and
evaluate their classification accuracy in a controlled setting. In
particular, we focus on differences between currently deployed
pictograms in the two countries, and a set of new pictograms
designed to increase human readability. We find that machine-
learning models generalize poorly to data sets with pictogram
designs they have not been trained on, and conclude that
manufacturers of advanced driver-assistance systems (ADAS)
must take special care to properly address small visual dif-
ferences between different traffic sign pictogram designs. Our
main contributions are the creation of a vast synthetic data
set of traffic sign images, training and evaluating state-of-the-
art classification models to assess the machine readability of
different pictogram designs, and employing techniques from
explainable AI to analyze which image regions are particularly
important to the classifiers.

I. INTRODUCTION

In recent years, the number of semi-autonomous vehi-
cles and advanced driver-assistance systems (ADAS) on
our streets has been growing steadily. Even if there are
still a lot of problems to be resolved before machines can
eventually take over entirely, certain aspects of driving have
been successfully automated already. One of them is traffic
sign recognition, which consists of detecting and classifying
traffic signs in video frames produced by a forward-facing
camera. The results of this recognition process can then be
used to automatically control the speed of the vehicle, or
to display the found traffic signs on the instrument panel
to inform the driver about them. In either case, correctly
recognizing the traffic signs is of paramount importance for
avoiding potentially fatal accidents. In the long-term future
human-readable traffic signs will maybe disappear entirely,
but in the current mixed-traffic regime machines must still
be able to recognize traffic signs tailored to human needs.

State-of-the-art convolutional neural networks (CNNs)
achieve near- or even super-human performance in many
computer vision benchmark tasks, including traffic sign
recognition [25]. However, as prior works illustrates, they
may at the same time fail to correctly classify input that
slightly deviates from the training distribution [36], [34],
[15], [12], [7]. In our experiments we seek to find out

*This research was funded by FFG (Austrian Research Promotion
Agency) under grant 879320 (SafeSign) and supported by the strategic
economic research programme “Innovatives OÖ 2020” of the province of
Upper Austria.

1A. Maletzky and S. Thumfart are with RISC Software GmbH, 4232
Hagenberg, Austria. alexander.maletzky@risc-software.at

2Ch. Wruß is with ASFINAG Service GmbH, 1230 Vienna, Austria

whether and how this observation applies to traffic sign
classification models under varying pictogram designs. Con-
cretely, we pose the following questions: (i) Are there
significant differences concerning the machine readability of
different pictogram designs? In particular, we compare the
current Austrian and German designs, as well as a proposed
new Austrian design. (ii) How well do models generalize
from one design to a new, unseen design? (iii) Which image
details and regions are particularly important to classification
models, and can this information be used to derive design
rules that improve machine readability?

For answering these questions we trained traffic sign clas-
sifiers on a vast synthetic data set. The reason why we used
synthetic- rather than real-world data is twofold: (i) A fair,
systematic comparison of the machine readability of different
pictogram designs is difficult to realize on real-world data
with inherent differences besides the actual pictogram design.
(ii) No real-world data exists for the proposed new Austrian
design. The latter point is of particular importance, because
whenever a traffic sign (pictogram) design is replaced by a
new one, existing ADAS must be tested on and possibly
adapted to the new design despite the lack of real-world
training data. Our work demonstrates how this can be ac-
complished with carefully-crafted synthetic data sets.

An extended version of this paper can be found on
arXiv [27].

A. Related Work

There exists a large body of scientific work regarding
the automatic detection and classification of traffic signs in
real-world as well as synthetic data sets. One of the most
widely used real-world data sets is the German Traffic Sign
Recognition Benchmark (GTSRB) [35] for classifying small
image patches extracted from traffic scenes into one of 43
classes. Similar data sets exist for traffic signs from other
countries and territories [29], [16], [43], [37], [40], [18], [8],
[24], [42], [31], [14].

Closer to the kind of data sets employed in our exper-
iments are partly synthetic data sets, where photographs
or video frames of full traffic scenes are augmented with
ultra-realistic weather effects [33], [10], [41]. In addition to
these partly synthetic data sets there also exist data bases of
fully synthetic 3D renderings of traffic scenes under varying
(weather) conditions [4], [32], [2], [3], [5]. All these data
sets have in common that they are better suited for object
detection tasks, though. In [39], [28] and [9], real-world
traffic scenes and signs are systematically modified by adding
weather effects and other types of corruptions, to evaluate

8



D
ra

ft

Fig. 1: Overview of the experimental setup. Starting from
three sets of traffic sign pictograms (each of a different
design) a large collection of embedded and corrupted images
(pictogram + traffic sign + background) is created. These im-
ages are then used to train classification models. Comparing
the performance of the models allows to draw conclusions
about the machine readability of the initial pictograms.

how well traffic sign detectors/classifiers work under such
‘challenging conditions’. On the one hand, this resembles
the approach we take in our experiments, but on the other
hand, the main goal of the cited works is to compare different
corruption types, not traffic signs or pictograms.

Similarly, in [20] a corrupted and perturbed version of
ImageNet [11] is created. The methods employed there for
corrupting images are similar to ours. ImageNet, however,
is a general image data base without any particular focus
on traffic signs, and the goal of [20] is to evaluate the
performance of classification models in general, comparing
models trained on ‘clean’ images to models trained on
corrupted versions thereof.

II. METHODS

Fig. 1 presents an overview of the experimental setup.
We first created synthetic data sets with traffic sign images
and then trained classification models on them. Finally, we
evaluated and compared the classification accuracy of these
models.

A. Creating the Synthetic Data Sets

For creating the traffic sign images in the synthetic data
sets, we started from high-resolution photographs of traffic
scenes on Austrian highways in the year 2014 and extracted
14 patches with traffic signs. Seven of these 14 patches
contain a prohibitory sign (round with red border), the other
seven contain a warning sign (triangular with red border).1

We then analyzed each of these 14 images w. r. t. color
spectrum and perspective, obtaining parameters that allow to
automatically replace the displayed pictogram by any given
new pictogram in a way that makes the resulting image still
look realistic. We then doubled the number of images by
flipping them horizontally.

Next, we selected 24 traffic sign classes of the ‘pro-
hibitory’ (18) and ‘warning’ (6) categories for our exper-
iments. Pictograms of the current Austrian and German
design could simply be downloaded from [6] and [1], re-
spectively. Four of the 24 selected classes exist in Austria but
do not have a German counterpart, meaning that we had to
craft the corresponding pictograms manually by combining

1The source images and patches can be provided upon request.

Axle weight Trailer Truck trailer Truck Truck weight Omnibus Motorcycle Moped

Cycle Cycle &
Moped

Power-driven Single-
tracked

Riding Animal-
drawn

Overtaking Truck over-
taking

Dangerous
goods

Pedestrian Road works Children Pedestrian
crossing

Cyclist
crossing

Slippery Wrong way
driver

TABLE I: List of the 24 selected traffic sign classes, in the
current Austrian pictogram design.

elements from other German pictograms. Pictograms of the
proposed new Austrian design were kindly provided by their
designer.2 The complete list of classes is shown in Table I.
Note that the selection of the 24 classes was mainly driven
by the availability of a new Austrian pictogram design.

We replaced the pictograms in the 28 source images
by the pictograms of the 24 selected classes, giving rise
to a set of 336 images per pictogram design, with 14
images per class. We resized these images to a uniform
size of 64×64 pixels. Finally, we augmented the set of 336
images by applying an arsenal of augmentation methods with
varying intensities [21]. In particular, first one out of ten pre-
selected corruption methods, like Gaussian noise, blurring,
rain patterns, etc. is applied. Then, the resulting images are
down-sampled by first down- and then up-scaling them, to
decrease their spatial resolution but keep the size of 64×64
pixels; no extra smoothing is applied. The purpose of down-
sampling is to simulate distance, as one of the key properties
of well-designed traffic sign pictograms is being readable
from large distances. We generated 250 variants for each of
the 336 clean images, with five different levels of corruption
intensity (50 per level). These intensities only affect the
down-sampling factor, i. e., a higher intensity level gives rise
to more ‘pixelated’ images.

Fig. 2 summarizes the whole data generation process. In
the lower-left corner, two images per corruption intensity are
shown, with intensity increasing from left to right. Eventu-
ally, every data set consists of 84,000 images, which are
equally distributed across source patches (12,000 per patch),
pictogram classes (3,500 per class) and corruption intensity
(16,800 per intensity level). This, however, only corresponds
to one data set, for one pictogram design. Repeating the
process outlined above for each of the three designs yields
three data sets with 252,000 images, where by construction
identical corruptions are applied to the images of each design
to enable an unbiased comparison. In order to obtain reliable
results and reduce the impact of the randomness inherent to
data augmentation on our results, we repeated the entire data
generation process as well as the subsequent model training
and evaluation three times and then averaged all results over
these three independent runs. In total 756,000 images were

2Stefan Egger, https://visys.pro/.
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Fig. 2: Data generation process for the synthetic data sets
used in our experiments. This process is repeated three times
for current Austrian pictograms, proposed new Austrian
pictograms, and current German pictograms, yielding nine
data sets with a combined total of 756,000 images.

generated for our experiments.
For the sake of brevity, the data set with current Austrian

pictogram design will be labeled ATc, the one with the
proposed new Austrian design will be labeled ATn, and the
one with the current German design will be labeled DE in the
remainder. The combined data set with all currently deployed
designs, i. e., the union of ATc and DE, will be labeled CUR.

B. Model Training and Evaluation

The classification models were trained separately on each
of the three pictogram designs (ATc, ATn, DE), as well as
jointly on the two current designs (CUR). We considered
two deep neural network architectures: a small ResNet
architecture [19] with 20 layers and an input size of 64×64
pixels, and the architecture by Li and Wang [25] with an
input size of 48×48 pixels. The latter was a natural choice
for our experiments, since it represents the state-of-the-art
on the GTSRB data set [35], with 99.66% test accuracy.

We split the data into training-, validation- and test sets
and trained the models for 60 epochs, using the Adam
optimizer [22] with an initial learning rate of 0.001, β1 =
0.9 and β2 = 0.999. The learning rate is reduced by 80%
whenever the validation loss does not improve for ten epochs.
In the end, the trained weights of the epoch with the smallest
validation loss are taken. Both training- and validation accu-
racy plateau after only a few (< 10) epochs in each case, so
training for a total of 60 epochs is certainly sufficient. The
splits into the three sets are based on the 28 source patches
all images ultimately originate from, and are identical for
each pictogram design.

After training, all models are evaluated on the held-out
test sets, using the overall classification accuracy as the
main metric of interest. As is common practice, confusion
between classes is treated uniformly. Putting less weight
on confusion between semantically similar classes (e. g.,

Li-Wang [25] ResNet [19]
ATc-ATc 98.89±0.11 98.48±0.35
ATn-ATn 98.68±0.17 98.45±0.09
DE-DE 98.85±0.17 98.23±0.56
CUR-CUR 98.69±0.06 98.28±0.10
ATc-ATn 80.18±0.97 77.76±3.97
ATc-DE 83.94±0.92 80.43±2.88
ATn-DE 75.33±0.31 74.24±1.07
DE-ATc 82.03±1.69 77.26±0.26
DE-ATn 77.35±1.52 72.82±0.82
CUR-ATn 85.48±1.27 84.17±0.60

TABLE II: Test accuracy (%) of the models trained in our
experiments, displayed as mean±SD over three runs.

‘Pedestrian crossing’ and ‘Cyclist crossing’) could be an
interesting direction for future research.

First, every model is evaluated on its ‘own’ test set, i. e.,
with the same pictogram design as in the set it was trained on.
Due to the uniform construction of training-, validation- and
test sets, the performance scores thus obtained are feasible
for comparing the quality of different models, even if they are
trained and evaluated on different pictogram designs. Besides
evaluation on the own test set, some models are evaluated on
‘foreign’ test sets with different pictogram designs, too, to
find out how well they generalize to unseen designs. In the
remainder, evaluations will be denoted by short identifiers
like ATc-ATn, where the data set label before the dash
indicates the design the model was trained on, and the data
set label after the dash indicates the design it was evaluated
on.

III. RESULTS

Table II shows the classification accuracy of all models.
One can see that there is hardly any difference in the
classification accuracy of the models between the three pic-
togram designs (top-three rows in Table II), and that the Li-
Wang models generally tend to outperform the corresponding
ResNet models by a small margin.

One can also see very clearly that the classification accu-
racy of every model drops significantly when evaluated on a
‘foreign’ test set, with different (albeit similar) pictograms.
In fact, the difference between current and proposed new
Austrian pictograms seems to be more pronounced than
the difference between current Austrian and German pic-
tograms. Models trained on German pictograms generalize
only poorly to new Austrian pictograms, and vice versa; this
is particularly interesting, since intuitively the design of the
new Austrian pictograms resembles the German design much
closer than the current Austrian design does, especially w. r. t.
stroke width and level of detail.

A. Per-Class Results for Foreign Test Sets

We focus on the Li-Wang models [25] in the remainder
of this section. The results of the ResNet models exhibit the
same overall tendency as the Li-Wang models, including the
frequently confused classes.

Table III lists the pairs of traffic sign classes the models
confuse most often if the pictogram design differs from the
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/ → 68.7%

/ → 54.1%

/ → 29.3%

/ → 28.4%

/ → 27.8%

(a) ATc-ATn

/ → 87.6%

/ → 55.3%

/ → 51.6%

/ → 27.9%

/ → 27.1%

(b) DE-ATc

/ → 95.3%

/ → 66.3%

/ → 54.7%

/ → 41.8%

/ → 38.7%

(c) DE-ATn

/ → 93.3%

/ → 57.8%

/ → 50.3%

/ → 15.9%

/ → 12.1%

(d) CUR-ATn

TABLE III: Frequent confusion of the models when evaluated on ‘foreign’ test sets. The numbers on the right are the
percentages of samples belonging to the class on the left-hand-side of the arrows, which are misclassified as the class on the
right-hand-side of the arrows. For better comparison, both training- and evaluation pictograms are shown on the left-hand-
side of the arrows; in the case of CUR-ATn, only current Austrian pictograms are shown, although German pictograms are
part of the training set, too.

ATc-ATn DE-ATc DE-ATn CUR-ATn

11.9% (24) 1.1% (24) 15.7% (22) 26.9% (22)

29.2% (22) 56.6% (21) 1.6% (24) 26.3% (23)

59.4% (21) 85.3% (17) 2.8% (23) 3.8% (24)

28.9% (23) 36.3% (23) 89.3% (15) 84.3% (20)

64.5% (20) 85.8% (15) 48.3% (20) 81.7% (21)

83.9% (15) 76.6% (19) 63.7% (19) 88.4% (19)

87.5% (14) 82.9% (18) 95.6% (13) 95.5% (14)

90.9% (13) 42.1% (22) 95.9% (11) 97.0% (10)

98.8% (2) 71.3% (20) 38.9% (21) 97.9% (6)

69.9% (19) 85.5% (16) 98.4% (2) 97.9% (5)

TABLE IV: Accuracy of selected classes. Numbers in paren-
theses denote the rank among all 24 classes. Even though
only Austrian pictograms are shown in the table, all models
are evaluated on the pictogram design indicated in the table
header.

design they were trained on. Class ‘Truck trailer’ seems to
cause most problems: DE-ATc and DE-ATn often confuse
‘Truck trailer’ with ‘Truck’; ATc-ATn hardly ever confuses
these two classes, but instead misclassifies ‘Truck trailer’ as
‘Animal-drawn’, such that in the total the accuracy of ‘Truck
trailer’ drops as far as 1.1%, as can be seen in Table IV.
It can also be seen that in all evaluations ‘Motorcycle’ is
frequently misclassified as ‘Truck’, which might be owing
to the three designs of ‘Motorcycle’ differing fairly strongly.
An analogous statement applies to ‘Power-driven’.

Table IV lists the per-class accuracy of the models for
a couple of selected classes. Although the overall classifi-
cation accuracy of all models drops considerably on foreign
pictogram designs, there are blatant inter-class differences. In
fact, a big deal of this drop is caused by only a few classes,
namely those listed in Table IV; the others are correctly
classified most of the time.

B. Qualitative Explanations of the Models’ Predictions

We employed layer-wise relevance propagation
(LRP) [30] for estimating the importance of image
regions and -details to the classification models, in order
to explain what information they base their predictions on.
Among the multitude of possible parameter configurations
of LRP we adhered to the one suggested for convolutional
neural networks in [23] throughout.

Fig. 3 shows the average explanations of all correctly
predicted test images of some selected classes, for the ATc-
ATc, ATn-ATn and DE-DE experiments. Explanations are
presented as heatmaps, where the color of a pixel indicates
its relevance to the model. For each evaluation, the left
column blends the heatmaps with the actual images to
facilitate localization, whereas the right column only shows
the heatmaps themselves. Evaluations CUR-ATc and CUR-
DE are spared since they exhibit a very similar relevance
pattern as ATc-ATc and DE-DE, respectively.

As can be seen, all models strongly focus on the pic-
tograms (or parts of them) when classifying a traffic sign
image, and only sometimes take the border of the sign into
account as well. On the one hand, this means that our models
learned to pay attention to the ‘right’ details of an image
and do not base their decisions on spurious artifacts in the
background, and on the other hand, it means that the shape
of the traffic signs does not really aid the models. This is not
surprising, since the uniform circular and triangular shapes
carry only little information for classifying the signs – espe-
cially if the pictograms alone are sufficient for that purpose.
Only in some cases, where the pictograms of prohibitory and
warning signs are similar in appearance, taking the shape
into account can be beneficial. This phenomenon occurs,
for example, with classes ‘Cycle’ and ‘Cyclist crossing’: for
the models trained on current Austrian pictograms the shape
of ‘Cycle’ seems to be quite important, whereas the other
models pay more attention to the shape of ‘Cyclist crossing’.

In classes ‘Pedestrian crossing’ and, to some extent, ‘Cy-
clist crossing’, the models trained on proposed new Austrian
and German pictograms focus a lot on the zebra crossing
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Fig. 3: Average explanations of all correctly predicted test
images of some selected classes. Reddish to yellowish hues
indicate regions with evidence in favor of the predicted class
and greenish hues indicate regions without any relevance.

at the bottom. The models trained on the current Austrian
pictograms, on the other hand, completely ignore the (only
barely visible) zebra crossing and instead focus on the per-
son. This difference in attention might be one of the reasons
why in ATc-ATn ‘Cyclist crossing’ and ‘Pedestrian crossing’
only achieve a comparatively low accuracy of 28.93% and
69.87%, respectively (cf. Table IV).

It can also be observed that sometimes the models only
look at certain parts of the pictograms, and not at the whole
pictograms. This effect is particularly visible in class ‘Wrong
way driver’, where all models completely ignore the car
at the top and almost entirely ignore the arrow as well.
Apparently, the two cars at the bottom are sufficient for
robustly distinguishing this class from the other 23 traffic
sign classes in our experiments. Likewise, in class ‘Cycle
& Moped’ the moped receives a lot more attention than the
cycle, especially in ATc-ATc. Interestingly, in class ‘Power-
driven’, whose pictogram is similarly split into an upper and
a lower part, the relevance is distributed much more evenly
across the car and the motorcycle.

Classes ‘Truck trailer’ and ‘Motorcycle’ allow us to spec-
ulate why the models fail to generalize to other pictogram
designs in some cases. Namely, both classes differ between
the three design groups in certain aspects the models pay a lot
attention to. The fact that the truck in ‘Truck trailer’ is visible
in its entirety in the German design seems to be important
to the models, since quite some relevance is assigned to the
front part of the truck. When comparing the two Austrian
designs of this class one can also observe a subtle difference
in the relevance pattern: only a small part of the truck is

visible in the current Austrian design, leading to a vertical
relevance pattern; in contrast, the proposed new Austrian
design displays a slightly larger part of the truck, leading
to a more horizontal pattern. Similarly, the fact that the
current Austrian and German designs feature a person riding
the motorcycle in class ‘Motorcycle’ seems to be important
to the models. The proposed new Austrian design lacks a
rider, which the models seem to compensate by paying more
attention to the front wheel.

It must be noted, though, that further experiments are
necessary to confirm the hypotheses expressed in the preced-
ing paragraphs. The relevance patterns constructed by LRP
or any other feature attribution method are only meant to
illustrate which parts of an image are important to a model,
but one must be careful when trying to draw conclusions
why the model fails to classify some class correctly.

IV. DISCUSSION

The objective of our work was to answer three research
questions regarding the machine readability of traffic signs:

1) Is there any significant difference between different
pictogram designs (ATc, ATn, DE) in terms of machine
readability?

2) Can traffic sign classification models trained on one
pictogram design be safely deployed to traffic signs
featuring a different design?

3) Can general ‘design rules’ for pictograms be formu-
lated to improve machine readability?3

The first question can be answered readily: even though
there are small differences in the observed model accuracies
in ATc-ATc, ATn-ATn and DE-DE (cf. Table II), these
differences are not significant. Hence, all three pictogram
designs are equally well machine-readable.

The answer to the second question is also negative: if
any of the models trained on one pictogram design is
applied to a different design, its classification accuracy
drops significantly, by about 15–23 percentage points. In
this regard, it is particularly interesting to note that a few
classes cause massive problems, whereas most of the others
can still be classified accurately. Even more surprising is
the fact that our models consistently generalize best between
German and current Austrian pictograms (in both directions),
although a human would probably find more similarities
between German and new Austrian pictograms. We do not
have any explanation for this phenomenon. Models trained
on CUR generalize better to the unseen design ATn than
models trained on ATc and DE alone. However, even here
the performance drop of more than 13 percentage points,
from 98.69% accuracy in CUR-CUR to 85.48% in CUR-
ATn, is significant. Hence, training on a more diverse set of
pictogram designs leads to some improvement, but is still far
from optimal. A larger study involving even more pictogram
designs remains a possible subject for future research.

3Adding something like QR-codes would be an obvious affirmative
answer, but in this work we focus on traffic infrastructure that can be
processed by machines and humans alike.
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Answering the third question is more intricate. Although
we generated explanations for the models’ predictions in
Section III-B, formulating design rules for pictograms based
on them is difficult. Still, what can be said is that deep
neural networks perceive traffic signs differently than hu-
mans: humans try to understand the meaning of pictograms
in order to classify them, machines only try to distinguish
them. This is characteristic for discriminative methods, as it
is exactly what they are meant to do. Distinguishing a fixed
set of pictograms, however, might be possible based on small,
semantically meaningless details. We hypothesize that this is
the main reason why the models in our experiment fail to
generalize to ‘foreign’ pictogram designs. Unfortunately, it
is hardly possible to predict a-priori which details will be
important to a classification model. The only general rule
that can be formulated in this regard concerns the visibility
of pictogram elements: the zebra crossings in classes ‘Cyclist
crossing’ and ‘Pedestrian crossing’ of the current Austrian
design consist of small, thin line segments that quickly
become imperceptible when the images are corrupted, and
hence the models do not pay attention to them. In the
proposed new Austrian design the zebra crossings are far
more pronounced and thus better visible, and the models do
take them into account. Thin lines and overly small patches
of ink should therefore be avoided.

Summarizing, the main takeaways of our work are as
follows:
• Machines can handle different pictogram designs

equally well, provided they have been trained on them.
• In the realistic scenario that an ADAS should correctly

recognize traffics signs with different pictogram designs,
the models must be trained appropriately. This can be
achieved by either training one single classifier on a data
set encompassing many different designs or by training
a separate classifier for each design.

• If existing pictograms are replaced by a new design,
classification models will likely have to be updated.
Since acquiring large real-world data sets is time-
consuming and only possible once the actual traffic
signs have been replaced, it might be necessary to resort
to synthetic data sets as presented in this paper, instead.

V. LIMITATIONS AND FUTURE WORK

When defining our experimental setup, we had to fix
certain parameter values that are up to discussion and could
be revised in future extensions of our experiments. First,
we only considered 24 traffic sign classes from categories
‘prohibitory’ and ‘warning’. Actual classifiers deployed in
ADAS must be trained on a much wider variety of classes
and may hence exhibit a different behavior w. r. t. sensitiv-
ity to pictogram design, frequently confused classes, and
attention patterns. Still, we believe that our reduced setting
approximates reality sufficiently well for making our findings
hold more generally. A similar statement applies to the in-
vestigated model architectures. Extending the experiments to
more architectures, like Vision Transformers [13], for obtain-
ing more reliable results is certainly possible. Furthermore,

traffic sign recognition systems deployed in ADAS are not
disclosed to the scientific community, so one could question
whether our findings are even applicable to them. Indeed, we
merely want to encourage developers of ADAS to consider
our experimental results and, if appropriate, conduct similar
experiments with their own traffic sign classifiers. Yet, we
think that the highly similar results of two fairly distinct
architectures present strong evidence that our findings are
not limited to the concrete architectures under consideration.

Another point of discussion concerns the image corruption
strategy. From the vast space of conceivable corruption
methods we picked some that we deemed either realistic or
particularly interesting, but many others would have been
at our disposal, too. In future experiments, one could in
particular try to incorporate corruptions that are specific to
traffic signs, like some kind of ‘over-exposure’ where, due
to the production process and reflectivity of the traffic sign
foil, brighter areas seem to ‘grow’ and hide parts of darker
neighboring areas, making small and fine pictogram elements
seemingly disappear. Furthermore, we focused on simulating
distance by spatially downsampling the images at varying de-
grees, but we did not apply other geometric transformations
like rotations and perspective distortions. In addition to the
degree of downsampling, one could systematically vary the
intensities of the ‘secondary’ corruptions (rain, noise, blur,
etc.) as well. A complementary augmentation strategy could
specifically target the pictograms themselves, for instance,
by systematically (re)moving vertices in vectorial versions
of the pictograms.

As discussed above, the models we obtained are not
very robust w. r. t. ‘foreign’ pictogram designs. One way to
counter this could be forcing the models to pay more atten-
tion to the global shape of the pictograms, instead of small
details. This, in turn, can perhaps be achieved by borrowing
ideas from current research on adversarial attacks [36], [17],
like adversarial training [26], [38]. Alternatively, one could
also try to preprocess the images before training and applying
a model, by applying a low-pass- or bilateral filter that
destroys high-frequency information and thereby biases the
model towards low-frequency shape information. Repeating
our experiments with adversarially trained models or said
input preprocessing could be an interesting direction for
future research.

Finally, it would be interesting to see how well the models
trained on our purely synthetic data would perform on real-
world data, like GTSRB. This could serve as sort of a
‘sanity check’ to ensure that the synthetic data sets resemble
reality sufficiently well. Of the 24 classes considered in our
experiments only seven are included in GTSRB, though,
rendering an exhaustive evaluation impossible.
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Efficient Instance Segmentation of Panoramic Images of Indoor Scenes

Werner Bailer and Hannes Fassold

Abstract— This paper addresses the issue of efficient 2D
instance segmentation of 360◦ images of indoor scenes. In
particular, we study the use of equirectangular convolutions
and the impact of different approaches to handle wrap-around
areas. We consider the use of Mollweide projection as a
representation for performing segmentation, and we provide a
toolchain to prepare the Matterport panoramic images for use
in workflows designed for COCO-style annotated datasets. The
results show no significant differences between using regular
and equirectangular convolutions. While the Mollweide projec-
tion allows for segmentation of otherwise missed objects, the
overall results do not outperform analysis on equirectangular
projection.

I. INTRODUCTION
In many application areas (e.g., interior design, furniture

retailing or renovation), communication with a customer or
future user during the planning and design phase is crucial
to select the right products and configurations. Making this
communication process effective saves costs, avoids later
modifications, and results in providing tailored solutions and
higher customer satisfaction. Augmented Reality (AR) has
the potential to make these communication processes highly
effective and provide a better experience for the customer.
However, AR content needs to be created by experts from
the respective domains, who often lack IT and media skills,
and shall provide a lightweight AR experience for the
customer. Current AR authoring solutions are quite complex
and require manually creating scenes or rely on objects
prepared with even more complex applications (e.g. CAD).
In order to facilitate this process, a simple capture process
(e.g., using consumer grade 360◦ cameras) and intelligent
scene understanding tools are needed.

One important component is segmenting and classifying
the relevant objects such as furniture in interior scenes.
In particular, we aim to perform instance segmentation for
indoor scenes in single panoramas of rooms. This shall also
be possible on consumer hardware with limited processing
capabilities. In order to process the 360◦ images, we aim
to avoid training or fine-tuning models specifically for 360◦

data. This is motivated by the fact that annotated datasets for
object segmentation on panoramic images are very scarce.
Due to the efficiency requirements, performing the analysis
on separate viewports of the 360◦ image is not feasible.

The authors are with DIGITAL – Institute for Information and Com-
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The contributions of this paper are: (i) we study the
use of equirectangular convolutions and the impact of han-
dling the wrap-around areas, (ii) we consider the use of
Mollweide projection as a representation for performing the
segmentation, and (iii) we provide a toolchain to prepare the
Matterport panoramic images for use in workflows designed
for COCO-style annotated datasets.

The rest of this paper is organized as follows. Section II
discusses related work and Section III presents the ap-
proaches that were investigated. Section IV discusses the
evaluation (including dataset preparation) and the obtained
results, and Section V concludes the paper.

II. RELATED WORK

Impressive progress has been made in instance segmen-
tation of indoor environments represented as point clouds.
Such point clouds can be obtained from capturing the scene
with multiple views or depth sensors. Recent approaches
such as PointGroup [16], 3D-SIS [14] and 3D-MPA [10]
show good performance on benchmarks such as ScanNet [7].
However, in many consumer application scenarios, depth
information is not available, and thus 2D approaches are
required.

We are thus interested in an efficient and reliable 2D
instance segmentation approach. A well known approach is
Mask R-CNN [12], a two stage instance segmentation based
on Faster R-CNN. Masklab [5] is a further evolution of
this type of approaches. In terms of efficiency, single stage
approaches are preferable. Recent methods showing good
performance on benchmark datasets include SOLO v2 [24],
Yolact++ [2], proposal free instance segmentation [15] and
SipMask [3].

We aim to apply instance segmentation to 360◦ images.
Different approaches to handle this issue have been proposed
in literature. One group of methods requires specific training
on 360◦ images or at least fine-tuning. This can be done
by adapting early layers of a pretrained network to work
on equirectangular images, which is proposed in [22] and
tested for object detection using VGG and Faster R-CNN. [6]
follow a similar approach with SphereNet, learning a network
adjusted to equirectangular inputs. The use of icosahedral
Snyder equal-area (ISEA) projections is proposed in [8]
and results in significant improvement for semantic indoor
segmentation on the SUMO dataset.

To avoid the need for specifically training the network
on panoramic data, [25] perform segmentation on multiple
stereographic projections. Equirectangular convolutions are
proposed in [23] as a convolution kernel for equirectangular
images that adjusts the input values to the image positions,
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including handling of wrap-around. A similar approach is
proposed in [9], with generalised convolutions that use a
mapping function. That paper analyses different mapping
functions and proposes mapping to a geodesic grid. Equirect-
angular convolutions have been recently used for indoor
semantic segmentation [11], and the authors report small
improvements over processing the equirectangular image
with standard convolutions.

While a number of approaches for handling 360◦ images
in CNNs have been proposed, many of them require some
kind of training or fine-tuning, which limits the practical
application. Using specific types of convolutions is reported
to improve performance (at least slightly) in some papers,
but most of the work deals with object detection rather than
segmentation. We are thus interested to study the impact of
these choices in our applications, as well as the use of the
Mollweide projection, which to the best of our knowledge
has not yet been investigated for this purpose.

III. INVESTIGATED APPROACHES

Due to the lightweight implementation and the potential
to run the method also on a mobile device, we select
Yolact++ [2] as the basis of our work. We implement two
approaches for processing 360◦ images with Yolact++: the
first one is to integrate equirectangular convolutions, and the
second is to transform input images using the Mollweide
projection.

For both equirectangular and Mollweide projected images
we also optionally extend the image to wrap-around the
seam of the panorama in order to facilitate segmentation of
objects cut across by the seam. We found experimentally that
using 1/8 of the image width is a useful value for indoor
scenes to ensure that objects of interest become visible in an
unseparated way on at least one side.

A. Equirectangular content processing

Yolact++ uses ResNet-101 [13] with FPN [19] as its
backbone. We thus replace the convolutions in the first
layer of the backbone network with the equirectangular
convolutions proposed in [23], leaving the parameters of
the convolutions otherwise unchanged. In particular, we use
the EquiConv Pytorch implementation1. These convolutions
change which pixels are used as input depending on the
position, simulating regular sampling on a spherical surface.
This includes handling wrap-around, i.e., accessing pixels
from the opposite image border when necessary.

While EquiConv is only used in one layer, the runtime dif-
ference in inference is still noticable, compared to the highly
optimized implementations for regular convolutions, which
are increasingly available (including on mobile devices).

B. Mollweide projection

The Mollweide projection [17] is a pseudocylindrical,
equal-area projection. It is also known as homolographic
projection or elliptical projection. In contrast to the equirect-
angular projection, it does not stretch areas near the poles.

1https://github.com/palver7/EquiConvPytorch

As a downside, the Mollweide projection bends vertical
longitude lines, whereas the equirectangular projection keeps
them straight. So each projection has its strong points as well
as weak points. In order to retain at least to a certain degree
the desirable properties of both projections, we propose a mix
of both Mollweide and equirectangular projection, which we
will term hybrid Mollweide projection in the following. We
define a blending factor α in the range [0,1], which allows
use to interpolate smoothly between the two projections.
We retrieve the standard Mollweide projection by setting
α = 0.0, the equirectangular projection by setting α = 1.0
and a mix where both projections are weighted equally by
setting α = 0.5. The implementation of standard Mollweide
and hybrid Mollweide projections follows the equations
given in [26] for the equirectangular projection, with a few
modifications in some places. Specifically, the equations
for the conversion between the sampling point (u,v) and
longitude-latitude (φ ,θ) have to be modified properly in the
following way: Equation (6) from [26] is to be replaced by

u = (x+0.5)/W ′

with

W ′ = ((1−α) d (θ)+α) ·W

d (θ) =

√
1−

(
2
π

θ
)2

Another point we have to take into account is that the
longitude φ is cyclic, meaning that the image pixels on the
left and right border of the Mollweide projection actually
belong to the same region on the sphere. To address this,
we add additional border pixels in each image row, on the
left and right side. The border pixels are taken from the
respective inner region of the other side (so the border pixels
added on the left side are taken from the inner region of
the right side, and vice versa). Figure 1 shows examples of
(hybrid) Mollweide projections.

IV. EVALUATION

A. Dataset preparation

For evaluation we require a dataset that provides natu-
ral panoramic images of indoor scenes. A number of the
indoor datasets containing panoramic images, such as Inte-
riorNet [18] and Structured3D [27], contain only synthetic
images. Sun-CG [21] (and the derived SUMO dataset) were
very actively used datasets for this purpose, but the dataset
has been withdrawn. Thus there are two remaining datasets
that meet this condition: Matterport3D [4] and 2D-3D-S [1].
As Matterport3D contains rather private homes than office
spaces, we selected this dataset. The dataset contains 10,800
panoramic views of 90 houses. As we use a model trained on
the COCO dataset, we only use the test split of Matterport3D,
consisting of 18 houses with 1,848 panoramic views.

While panoramic RGB images are provided with the
dataset, the instance and semantic segmentation ground
truth maps are not. The scenes have been labelled on 3D
meshes, and thus the annotations are provided in this format.
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ftFig. 1. Example of Mollweide projection (top), hybrid Mollweide pro-
jection (α = 0.5, middle) and hybrid Mollweide projection with border
(α = 0.5, border=0.125, bottom).

We modified the mpview tool, that is provided with the
dataset2, in order to batch render the semantic and instance
segmentation maps corresponding to each view. As support
for 360◦ cameras is not easy to integrate into this viewer,
we generate the segmentation maps for each of the 18 tiles
used to compose the panoramas in the dataset, and perform
the stitching process for the segmentation maps. Apart from
some mislabelled parts of the mesh, some object and wall
meshes have holes, that makes other objects visible (e.g., a
TV screen from the outside view of a house). These issues,
that cannot be resolved automatically, create some level of
noise in the annotations which we have to accept due to lack
of resources to manually fix them.

The annotations are provided for a set of 40 indoor classes
specific for this dataset. These classes mostly (though not
fully) overlap with the more commonly used NYU40 set of
classes [20]. In order to work with models pretrained on the
COCO dataset, we use the overlapping set of classes between
Matterport3D and COCO: chair, couch, potted plant, bed,
dining table, toilet, TV, sink.

Most semantic and instance segmentation methods support
the COCO annotation format. We have thus created a tool
to convert the Matterport3D segmentation maps to COCO
annotations. This involves generating polygons from the
object masks, for which we use pycococreator3. The COCO
annotation format does not support the notion of subtracting
partial polygons, thus we apply hole filling to the binary
mask. In order to reduce the issue of border pixels or small

2https://github.com/niessner/Matterport/tree/
master/code/gaps/apps/mpview

3https://github.com/waspinator/pycococreator

regions caused by triangles cutting through the surface of
other objects, we also apply morphologic closing. However,
this does in many cases not remove the false annotations
caused by holes in the mesh mentioned above.

One other property of the Matterport dataset is that many
of the rooms are rather “loft-style”, i.e., other capture loca-
tions are visible in the background. Most objects thus appear
multiple times, once quite prominently in the room being
captured, and one or more times in another (part of the)
room. This also results in a large number of small annotated
objects. In fact, 64.8% of the object instances are smaller
than 0.05% of the image area, and 85.1% of the object
instances occur more than once. The size differences are
significant: in 62.8% of cases the smallest occurrence has an
area of 1% or less than the largest occurrence of the same
object instance.

For equirectangular images, annotations extending across
the seam of the image will result in polygons at the left
and right borders of the image. For the cases where bor-
ders for handling wrap-around have been added (either to
equirectangular, Mollweide or hybrid images), we process
the annotations in the border regions to keep only those that
continue from the image center into the border, but remove
those that only start in the border regions (and are likely to
wrap around, unless they are small).

Our toolchain for preparing the Matterport3D dataset
is made available at https://github.com/
atlantis-ar/matterport_utils. It consists of
a modified version of the mpview tool for generating class
and instance segmentation maps, a script of combining
source images and generated maps into panoramas, and a
script for creating COCO style annotation files.

B. RESULTS

We compare the performance of a Yolact++ model trained
on COCO applied to the panoramic Matterport3D views
under different conditions in terms of projection, convolution
type and wrap-around handling. We measure the average
precision (AP) of detected masks at overlaps (IoU) of 50%
(AP@50) and 70% (AP@70). An overview of the results
is provided in Table I. In order to show the impact of the
many small regions from far away objects, we provide results
for evaluating against the unfiltered ground truth as well as
against a ground truth where objects smaller than 0.5% of the
image area have been filtered out. Note that this is a very
conservative choice, that will not remove all the multiply
depicted objects, but has been chosen to ensure that no
smaller foreground objects are removed. To put the results
in relation, it is worth noting that the current state of the art
for 2D instance segmentation on the ScanNet benchmark4 is
0.358 in terms of AP@50 (consisting of regular rather than
panoramic images).

From the results we can see that there is no significant
difference between using regular convolutions and equirect-
angular convolutions. Also the configurations adding extra

4http://kaldir.vc.in.tum.de/scannet_benchmark/
semantic_instance_2d.php?metric=ap50
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Projection conv min wrap border AP
IoU50 IoU70

Equirect regular 0.0 no 0 15.07 6.64
Equirect regular 0.5 no 0 26.88 12.77
Equirect equiconv 0.5 yes 1/8 26.82 12.49
Equirect regular 0.5 no 1/8 25.21 11.86
Equirect regular 0.5 yes 1/8 24.92 11.78
Mollweide regular 0.5 no 1/8 16.10 6.63
α = 0.0
Mollweide regular 0.5 yes 1/8 15.97 6.58
α = 0.0
Mollweide regular 0.5 no 1/8 21.95 10.10
α = 0.5
Mollweide regular 0.5 yes 1/8 21.82 9.93
α = 0.5

TABLE I
OVERVIEW OF THE RESULTS OBTAINED WITH A YOLACT++ MODEL

TRAINED ON COCO. conv REFERS TO TYPE OF CONVOLUTION USED,
min DESCRIBES THE MINIMUM AREA OF OBJECTS (IN PERCENT OF THE

IMAGE AREA) THAT WERE RETAINED IN THE GROUND TRUTH, wrap

DESCRIBES WHETHER WRAP AROUND HANDLING HAS BEEN APPLIED TO

THE GROUND TRUTH AND border SPECIFIES THE WIDTH OF A BORDER

BEING ADDED.

borders for wrap around handling perform very similar,
though slightly worse. In addition, filtering the ground truth
to have each object in the border region only once performs
slightly worse (for all projections and overlaps) than not
doing so. The reasons seem to be that it is not necessarily
the more prominent version of the object that is better
segmented, and that partial objects at borders are sometimes
quite well segmented. The pure Mollweide projection per-
forms clearly worse, and the results improve when we mix
the projections.

Figure 2 shows an example of the results obtained with
the different configurations and the detection of some ob-
jects, e.g., the second chair, the falsely detected TV in
the office and the bed visible from the room next door.
While the Mollweide projection performs generally worse
than equirectangular, there are some objects that are only
detected in Mollweide projection, and get lost already in the
hybrid projection. We also observe some differences between
the equirectangular projection with and without border. The
presumption is that the aspect ratio change due to adding the
border also plays a role in this behaviour.

We have performed further experiments with the
SOLOv2 [24] framework, training it on the COCO and Scan-
Net datasets. The results indicate that the small differences
in terms of performance between regular or equirectangular
convolutions also hold for other models and datasets. How-
ever, the dataset determines how well the model generalises
to equirectangular images. We observe that models trained on
COCO images generally provide better segmentation quality
(in particular, concerning the accuracy of the mask) for
equirectangular images than those trained on ScanNet.

V. CONCLUSION

In this paper we have studied the problem of efficient 2D
instance segmentation of 360◦ images of indoor scenes. We

have analysed different ways of preparing equirectangular
content, and assessed the use of regular vs. equirectangular
convolutions on equirectangular projections. In addition, we
consider the Mollweide projection as an alternative projec-
tion. We performed evaluation for the different configurations
on panoramic images from the Matterport3D dataset. One
contribution of this paper is thus a toolchain for preparing
the panoramic dataset, and provide class and instance labels
in COCO-style annotation format for use with a wide range
of object detection and segmentation methods.

The conclusion from our experiments is that using
equirectangular convolutions does not improve performance,
but is computationally less efficient than the well opti-
mised implementations for regular convolutions. While the
Mollweide projection allows for segmentation of otherwise
missed objects in a number of cases, the overall results do
not outperform those on equirectangular projection. It needs
to be further studied, if combining results from different
projections provides benefits and justifies the increased com-
putational effort.
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High-Speed Stereoscopic Fragment Tracking in Industrial Filter
Cleaning
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Abstract— Dust filtration is a critical operation in industrial
processes, especially for environmental gas cleaning. Thereby,
contaminated gas is passed through a fabric that holds back
solid particles. Over time, these particles form a compact layer
on the fabric surface further denoted as filter cake. This filter
cake is periodically cleaned off via reverse air jet pulses, which
cause an explosive breakup of the cake. To gather insights on
the mechanics of this breakup, a high-speed, contactless 3D-
monitoring method is presented and evaluated on laboratory
scale. Results show that, despite the untextured appearance of
the filter cake, for the first time a continuous three-dimensional
evaluation of the filter cake motion is made possible. From
our experiments, a novel data set is provided which will
allow the derivation of mechanical parameters for filter cake
fragments and allow the implementation and validation of
dynamic simulations further on.

I. INTRODUCTION

Industrial filter systems typically are implemented as bag-
houses, i.e. batteries of hanging, cylindrical filter bodies
which receive contaminated gas on the outside and deliver
cleaned gas on the inside of each cylinder. They are applied
in processes like waste compustion to reduce the emission
of solid particles. In this process a permeable filter medium
in the gas stream blocks particles up to 10× smaller than
its pore diameter, from passing through. As a consequence,
dust particles deposit on the filter surface and form a powdery
layer, which is commonly denoted as filter cake. Over time,
the layer thickness increases and with it also the flow
resistance. To ensure a continuous process, it is mandatory
to remove the filter cake after a certain time or pressure
limit. This is often accomplished by a reverse jet pulse of
compressed air of about 100 milliseconds, which is applied in
opposite gas flow direction and pushes the filter cake off the
filter surface. It is common practice that the pulse is applied
in-situ, without the interruption of filtration. This combi-
nation of a continuous forward air flow and a reverse air
pulse creates a complex breakup scenario of filter cake with
fragments partially flying off the filter surface, dispersing or
being reattached. In this work, filter cleaning scenarios are
reproduced at laboratory scale and a computer vision system
is presented, which allows to observe the cleaning process at
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no. P30447-N32. Thanks to the Institute of Computer Graphics and Vision
of the TUG for providing parts of the equipment.
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high temporal resolution. A considerable challenge is the 3D
tracking of the decomposing filter cake components, despite
the white, untextured surface, the high speed of motion and
the continuous decomposition of the components. We thereby
introduce a semi-automated approach, where a high-speed
stereoscopic camera-projector-system is used to generate a
sequence of depth maps, followed by manual annotation of
particle agglomerates.

A. Background of Optical Instruments in the Field of Filtra-
tion

In releated work, 2D image sensors were used to observe
the partial removal of dust from filters [6] (p. 213), [4].
Usually, one camera scanned one section after another and
3D data allowed a quasi-static layer height analysis. This
data was obtained with a single camera e.g., by directing
structured light patterns on the surface [2]. Other groups
demonstrated the benefits of using a stereo camera among
other imaging techniques [8], [7] as usually perfect alignment
of the equipment is not required, and a single shot is recorded
in a short period of time enabling real-time applications.
In this work the high-speed stereo camera provides time-
resolved 3D images for above analysis of the course of
patches that liberated from the filter during the cleaning
pulse.

II. OPTICAL SYSTEM INTEGRATION

In order to reproduce a filter cleaning process at labora-
tory scale, first the minimum required filter area must be
determined, which has to be used in a lab test in order to
produce representative results. In a production environment,
industrial filter material is always spanned over a grid of
support rods. The grid size ultimately determines the size of
a laboratory setup, because it defines an isolated cell of filter
operation and a scallopping of the filter material is confined
by the supporting rods. This grid size is reported to be in
the range of 30 to 40 mm in width and 200 to 400 mm in
length. As the scalloping effect is evident circumferentially,
the width of the grid is the limiting dimension for lab scale
reproduction. At the lab-scale rig, this dimension is reflected
in the 70 mm diameter of the filter fixation ring, which is
inserted between a cylinder and a pressing ring. The test rig is
designed to operate at normative test conditions standardized
in ISO 11057, therefore the ring orifice makes 56 mm of the
filter visible. Particulate gas is fed directly towards the filter
via a diffusor outlet. Downstream, the cylinder is connected
to a blower that ensures a forced direction of flow. The
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dust-containing volume between raw gas outlet and filter is
confined by a metallic chamber that allows the obeservation
by an optical system from the outside. The construction
dimensions are shown on the sketch on the left half of Figure
1. A side channel is used to further reduce the minimum gas
flow rate, resulting in a filtration speed of about 20 m/min.
The intended measurement volume of the vision system is
given by a cylinder with the filter surface at the bottom and a
height of 20 mm. The cameras are situated opposite the filter,
where a 6 mm thick composite glass replaces the metallic
wall to allow optical access and still prevent the optical
system from dust deposits. The glass can be cleaned by a
magnetic wiper, inside from the outside. As shown in the
photograph on the right half of Figure 1, the optical system
consists of two synchronized cameras, capturing images in
512 px x 600 px resolution at a framerate of 500 Hz.
Due to the high motion speed, the camera exposure is set
to a maximum of 750 µs and synchronized to a high-
power LED flashlight. To assist an automated dense stereo
reconstruction, the directed LED illumination is enhanced
by a static random dot pattern, generated by a Laser light
source. In this combination, the directed LED light generally
generates crisp shadows at filter cake cracks and edges, while
the random dot pattern generates a dense surface texture. In
this way, the conditions at the onset of the cleaning pulse
can be examined, which reaches a steady state after about
20 ms. The acquisition of an image sequence is triggered
by the pressure valve of the reverse jet pulse. The optical
distance of the cameras, both focused on the center point of
the top filter surface, is about 374 mm – each with a stereo
angle of about 15◦ giving a stereo base (the distance of the
optical lenses) of about 100 mm.

Fig. 1. Left: Sketch of test rig in front view with outlined metallic box.
Right: Photograph of test rig from top. From left to right: pattern generator,
stereo camera, filter fixed in holder, powder feed with diffusor, magnetic
wiper (top corner) and lighting system. Viewed window (dashed red). Z
direction (left) and X, Y direction (right). Dimensions in mm.

Due to restrictions in camera resolution at the respective
speed, the cameras observe the active area of the filter
medium over a window of 45×53 mm with a resolution of
86−90 µm/px. In Subsection IV-A the confidence interval
for depth values is found to be 94 µm. The stereo-optic
method would be able to resolve in the range of the pixel
resolution, provided that the distance of all points on the
surface can be detected correctly.

III. METHODS AND PROCEDURES

Once the setup is configured, images from both cameras
can be captured. To obtain 3D information of the observed
patch surfaces based on their distances to the filter, several
post-processing steps are required. The filter will be removed
after an experiment and may bend during an experiment
but will maintain its position at the circumference once
clamped in the holder and tightened. Therefore, calibration
is required prior to an experiment. Here the applied methods
are introduced in their experimental sequence.

A. Calibration

After the insertion of a clean filter medium sample, the
camera system is calibrated by a planar calibration target
with randomized dot pattern [10] [5]. Prior to filtration or
cleaning one snapshot should contain the fixed filter with
the pressing ring. The reason is given in Subsection III-C
for the sake of operating sequence using the stereo-optical
system.

B. Stereo-Matching

The goal of stereo-matching is to obtain a temporal
sequence of depth maps in the stereo coordinate frame. The
depthmaps need to be dense while conserving edges as good
as possible. A specific challenge in the matching problem
is the uncommon type of scenery, on which more recent
learning-based stereo matching algorithms give worse results
than traditional algorithms. Moreover, the pure white powder
completely lacks texture, as does the background of the
flying fragments, which is due to the directional illumination.
For foreground fragments, this problem is mitigated by
projecting a random dot pattern on the surface, but the
background still remains dark and untextured. Therefore,
any dense stereo matching algorithm will extrapolate the
disparity information obtained at nearby fragment edges,thus
reporting excessively high disparity in these regions. Adding
a verification step through forward-backward matching helps
to identify these regions, but nonetheless the fragment edges
are not depicted sharply in the disparity map. After a qual-
itative comparison of recent stereo matching algorithms to
traditional ones [3], we chose to apply a modified version of
the well established semi-global matching algorithm (SGM)
to compute the disparity map. A synchronized camera pair
delivers images at a rate of 500 Hz. In contrast to the original
SGM implementation, our algorithm is completely based on
floating-point operations without performance loss and uses
an M-Census metric for matching and bilateral filtering. To
increase the overall accuracy, subpixel matching is performed
over the entire image pyramid. Especially for planar, oblique
objects like filter cake fragments, a slanted window matching
is applied to compensate for perspective distortions. The
obtained disparity information is converted to metric space
with X and Y coordinates parallel to the primary camera’s
image plane and the Z coordinate towards the filter surface
along the camera’s principal direction. Figure 2 shows the
result of two disparity map computations. A state of the
art machine-learning-based method [9] (left) has a tendency
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to hallucinate depths and does not give a clear distinction
between individual patches. A modified SGM method with
forward-backward-matching creates more sparse, but also
more reliable 3D measurements.

Fig. 2. Disparity map comparison of a machine-learning based stereo
matching algorithm [9] (left) and a modified SGM algorithm (right).

C. Coordinate Transform Using Markers

The exact mounting position of the filter under test relative
to the stereo setup may vary between experiments. In order
to make these experiments comparable, a camera pose-
independent coordinate system has to be defined and each
experiment needs to be referenced to it. This reference
coordinate system was defined relative to the mounting ring
of the filter surface and is therefore as close as possible to
the filter under test. Dedicated reference points with known
world coordinates are marked on the fastening rings as shown
in Figure 3, detected in the stereo images, refined to subpixel
accuracy and finally triangulated. A rigid registration step
transforms the measurement coordinate frame into the ref-
erence world frame. The resulting reference world frame is
parallel to the filter plane with the perpendicular Z coordinate
directing to the cameras and the origin at the center of the
filter surface.

Fig. 3. Crosshair (left) and arrows (right) define origin and orientation
of used camera pose-independent right-handed reference coordinate system.
For calibration purposes, 11 dedicated reference points with known world
coordinates on the filter fixing ring were defined (right). Red circles (right)
respectively blue dots (left) mark the selected reference point subset during
calibration routine – in particular case marker 1, 6, 8 and 10.

D. Annotation of Patches

The segmentation of individual filter cake patches is cru-
cial to further assess their geometric parameters and temporal
evolution (i.e. motion, further splits, collisions, etc.). A
fully automated procedure is not deemed feasible, because
it is a subjective measure when an individual fragment is
completely detached from its neighbors, and how to assess
partially occluded fragments. In addition, the visibility of
patches may be affected by dust, and tilted stains may have
a shaded surface that slowly fades into the black background.
Therefore, AnnotationAssistant (an interactive segmentation
software) has been designed for annotating patches semi-
manually. The program takes a dataset of rectified im-
ages and let you select a specific image or step through
the recorded image sequence. Fragments are annotated by
marking a contour polygon. The process is assisted by an
edge refinement between marked polygon points. Hereby, the
connecting line between labeled polygon points is adapted
to follow the local edges inbetween. Once annotated, filter
cake fragments can be investigated based on automatically
calculated geometric features. Figure 4 shows the first image
where filter cake detachment initiates.

Fig. 4. First frame in recorded sequence showing the beginning of filter
cake detachment. The left image shows annotated patches in this frame,
gathered with the aid of AnnotationAssistant. The right image depicts the
related label mask. Patch boundaries are schown in red.

Manual annotation is feasible for patches with length of
at least 2 mm. Each patch automatically receives a unique
identifier and is stored in a database. It can be refined and
edited later on. For efficiency, labeled patches can be copied
to the next time frame to be edited and adjusted to the new
patch positions.

E. Extraction of Tracked Positions

In order to create consistent trajectories for segmented
patches, they need to be tracked over time. Also here,
automated approaches are deemed infeasible, as the patch
motion between frames may be up to 20◦ in rotation and
a quarter of the image area in translation. The appearance
of a patch can change drastically between images, so local
vicinity constraints cannot be applied. Rotation of patches
in particular brings considerable appearance changes, so an
explicit matching based on surface shape or contour is not
feasible either.
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The inroduced interactive AnnotationAssistant in Section
III-D calculates geometric parameters and statistics, which
are gathered per patch and allow quantitativ evaluation of the
filter cake detatchment process. These parameters comprise
patch center of gravity position, covered area, perimeter,
orientation, several depth measures (real world z-position of
a patch relative to filter fixation ring center) as well as the
surface normal vector as a result of a plane fitting routine
conducted on the 3D point cloud and some more statistics.

F. Distance from Filter Plane

The Z coordinates for an evaluated image can be seen in
the corrected depth map on the right side of Figure 5. To
obtain the course of detached patches, the image sequences
are reduced to relevant ones that represent the detachment
process. Patches may emerge, break into smaller patches,
merge again or leave the observation window. The evolution
of the patches can be represented, for example, in the form
of a dendrogram, where the branch length represents the
image sequence. Including the patch position, the paths of
all patches can be ploted in a single, 3D space representing
graph which requires renumbered patches [1].

IV. EXPERIMENTAL RESULTS

In this chapter the quality of the measured geometric
features of tracked patches is analyzed. First, the accuracy of
the depth delivered by the application is determined. Then,
limitations of reliability are indicated for certain conditions
during cleaning. Finally, the propagation of the patches in Z
direction is plotted and the degree of regeneration is calcu-
lated. Confidence intervals are given for 95% significance.

A. Depth Accuracy Considerations

Considering a surface resolution of 86−90 µm/px and a
depth to baseline ratio of 4 : 1, a stereo matching accuracy
of ±0.5px will translate to a depth error of ±0.18 mm.
Compared to the theoretical accuracy obtained by stereo-
optic algorithms, the accuracy reachable in practice is lower,
due to surface roughness and porous structure of filter fibers.
The metallic surface of the ring reflects a good coordinate
transform to the filter plane in the figures that follow. This
plane may be tilted slightly, if the calibration points chosen
at the markers differ in notch depth. For a fresh filter placed
flat in the holder and fixed tightly, there is outward bulging
as in Figure 5. The metal surface fluctuates in the range
of −0.059 to 0.597 mm. Because of indented markers the
true filter plane lies at a mean depth of 0.227± 0.041 mm.
Near the center the fresh filter, i.e., a needle felt of untreated
surface, fluctuates between 1.06 and 1.38 mm, a considerable
surface roughness.

However, after filtration the deposited particulate layer
differs radially in height as shown in Figure 6. The particulate
surface on top of the metal ring is 0.19 to 0.785 mm away
from the calibrated filter plane, which fluctuates in the same
range as before, without particulate layer. The mean depth
from the filter plane at the metal ring is 0.55± 0.047 mm.
So the particulate layer adds 0.323±0.064 mm thickness on

Fig. 5. Left: Image of a fresh, particle-free, flat clamped filter. The reference
filter area is outlined red. Black dots represent reference markers. Right:
Corrected auto-scaled depth map of the fresh filter area in mm. As can be
seen, the filter bulges out.

top of the true filter plane. Layers on top of the metal ring
may inherit the imperfections from the metal ring. On top of
the filter far away from its circular edge and unintentionally
created crater at center (due to large filtration velocity), the
particulate surface fluctuates between 1.6 and 1.95 mm as a
measure for surface roughness. Averaging over the regarding
areas along the profile could smoothen the respective areas
on top of the filter ranging from 1.63 to 1.85 mm in depth.

Fig. 6. Depth of particulate layer after filtration, in auto-scaled mm (right).
Annotations for top of metal ring and radial profile (red outlines). See the
fluctuations beside a radial distribution.

The flattest surface is on top of the metal ring; therefore,
the accuracy of depth is 0.094 mm and may change for the
thickness, here 0.128 mm (confidence width).

B. Limitations of Observation

Detachment of particulate matter is indicated in the first
instance by breakups on (and in) the surface. Onsets of cracks
on a surface are hard to detect, humans may assess from later
crack propagation. Figure 7 shows the first breakup on the
surface that later leads to patch detachment. More breakups
occurred before a patch liberated from the filter surface. For
comparison reasons the depth scale was manually set to the
same range as in Figure 7 to Figure 10.

Liberated patches obey gravity but move to the top of the
image as in Figure 7 due to test rig misplacement where
the right side became the bottom side in this exemplary
experiment. The cameras and so the images kept their relative
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Fig. 7. Depth map at onset of detachment, in mm (right). Numbered
patches (red outlines). Figure out surface cracks and see the point markings
outside of concave patches 2 and 3.

position. The patches rotate and do not have sharp edges, a
human may regard areas subjectively as patches or not, as
is shown. Patches overlay each other and tilt at the surface.
Sharp jumps in distance cause stereo-matching to fail. For
instance, a projection of a distant object is clear at one
viewing angle but the projection of the same object from
a different viewing angle hides a spot seen with the former
viewing angle where stereo-matching fails. It may wrongly
produce a counter-copy for large distant objects of inverse
increased distance like the blue one at the bottom right half.

Fig. 8. Annotated and numberated patches at end of liberation process
(left) and corresponding depth map based on mm (right).

The mismatch may be clearer from an example of the
two viewing angles. At the left half of Figure 9 there may
be an object within the blue rectangle. At the right half the
scene is viewed from an angle at the right and the object
captured within the blue rectangle. The position of the object
differs in both images, where the depth at the image position
of the back camera seems to be correct and the counter-
copy is situated at the image position of the front camera. A
small, resolved particle causes the stereo-matching to fail as
well, highlighted are areas with numerous closely resolved
particles. Smaller, unresolved particles may smear within a
pixel to altered brightness and color.

Patch 6 at the top left is surrounded by particles so small
(1-3 pixels) that one may interpret that as fog of dust. At
this intermediate condition stereo-matching fails at some
locations of the dust. If the objects are smaller, they blur the

Fig. 9. Depth map at the end of cleaning, in mm (right). From camera
view, gravity goes up. Numbered patches (red outlines).

background and stereo-matching generates the background
depth, not shown here. An event of a dense haze of dust was
not found, therefore it is not clear so far whether stereo-
matching can cope with haze. Matched surfaces are subject
to little random fluctuations among an image sequence.

C. Degree of Regeneration Analysis

At the end of cleaning, patches have either completely
detached from the filter surface, have remained at their
place or redeposited at the surface. An example is shown
in Figure 10. In a conservative (safe assumption) view of
non-regenerated area, tilted patches are considered by their
unprojected surface area and areas of covering patches are
considered multiple times. Those small areas were neglected
where a normal vector was not provided.

Fig. 10. Stereo images of back (left) and front (right) camera at end
of detatchment process. From camera view, gravity goes up. All annotated
patches are numbered (red outlines, left). Blue rectangles denote examples of
tilted patches that lead to false area results and blue ellipses mark examples
of small particles.

The degree of regeneration is the ratio of liberated quantity
to initial quantity, here quantified by area. Using projected
areas alone gives 39.8% [1]. The conservative approach gives
20.2%.

D. Patch Trajectory Analysis

To plot the distance that the patches travelled the individ-
ual patches are abstracted in Figure 11 by their projected
radial position from the filter center. The individual patch
areas are indicated by the size of the circles. To ascertain a

24



D
ra

ft

trend a few consecutive images were selected. During the
cleaning air pulse, the filter moves from the initial stage
(image 000000) to the final stage (image 004002), where the
radial profile of the surface was obtained from the deposited
patches. This reflects the crater of almost no dust at the center
and the bulge caused by the pulse of pressurized air. Strictly
speaking, the measurements are from the top of the patches.
Compared with Figure 10 the circumference at about 20mm
is mostly of tilted patches with larger surface dimensions
than thickness. Therefore, the radial profile fit to their mean
depths overestimates the filter surface more than the fit to
mean depths of plane patches. The patch at the center is the
largest occupying a radius of 11mm the least as other patches
appear at larger radii. Some of them may have redeposited on
top of the central patch which requires further investigation.
Prior to image 000219 the large patches have existed since
the detachment. Over the course of a patch movement, it
may appear in the selected images for a short while and
disappear from the plot. As filtration was discontinued during
cleaning, the patches experience only the force exerted by the
compressed air on the filter and follow that path afterwards
(up arrow). For this experiment the test rig was placed with
the right side at the bottom, therefore the filter is oriented
vertically and gravity acts on the patches laterally to the filter
plane. Thus, the particles follow a rather parabolic path in the
plot. The pulse lasted longer than the images were captured.
However, one patch seems to redeposit (down arrow), outside
the filter.

Fig. 11. Travelled distance between 22nd and 28thms of detachment
(000219 to 000222, grey of various outline) against radius from filter center,
plus initial (000000 of dashed outline) and final stage (004002 of solid
outline). Circle size indicates patch area. Final surface (dotted trendline); at
final stage all shown patches are deposited on filter.

V. CONCLUSIONS

In total, 77 experiments have been conducted, with the
filter cleaning process captured on a series of 15 to 20
images per experiment. The presented computer vision setup
and analysis system allows for the first time a quantitative,
three-dimensional analysis of dust filter cleaning processes
at 500 Hz. It is evident, that errors in size and orientation of
patches can occur on an individual level due to mismatches

and due to the patch shape. Typically, patches have an area of
5 mm×5 mm, with a thickness smaller than 2 mm. If a patch
rotates and is viewed from the side, its size will be grossly
underestimated. The last Figure 10 shows that it is possible
to distinguish between redeposited patches and patches that
remain at the filter at a size-based level.

VI. OUTLOOK

As a result of this work, the cumulative area distributions
can be obtained from the experiments and will be compared
with data from literature. Also, the validation of simulations
will become possible in terms of motion paths of the patches,
and velocities of the patches at a given time, as soon as above
measures allow error-tolerant tracking of individual patches.
Based on this data set, the next step is to create evolution-
trees of patches, i.e. to track the decomposition of patches
into smaller ones and establish relationships to ancestors and
predecessors. To identify the class of patches that travel
long distances, more cumulative analyses will assist, in
terms of their size and local origin. The labeled dataset of
fragments will act as a reference in the future to train an
automated instance segmentation, where the now laborious
patch labeling will be replaced by a per-pixel classification
step. In occluded regions, where the matching of two cameras
failed, additional cameras may assist, i.e., a multi-camera-
view, especially in the matching of layered objects. Besides
the tracking of patches, by the above measures, the local
and time-resolved investigation of powdery layer breakage
may become possible. Finally, the movement of flexible
filters or the compaction of powder layer may be determined
separately.
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Enabling Classification of Heavily-occluded Objects through
Class-agnostic Image Manipulation

Benjamin Gallauner1, Stefan Thalhammer2 and Markus Vincze2

Abstract— Image classification is a fundamental task of
computer vision. When training classifiers on images of heavily-
occluded objects, classification is strongly influence by the
appearance of the occluders. That leads to a severe drop in
classification accuracy when confronted with unknown occlud-
ers. More precisely, when classifying shelf types in a shop floor,
occluded by household items, the full range of diversity of
those occluders has to be regarded as unknown for test time.
However, resulting in a severe drop in classification performance
when dealing with images containing unseen occluders during
training time. In order to improve classification, we exploit the
generalization capability of unknown object instance segmen-
tation. We segment and replace the object appearance of the
unknown occluders with random intensity noise. Consequently,
the classifier is able to focus on those image parts containing
the objects of interest. We show the theoretical foundation of
our approach through empirical analysis on a test set with large
data distribution shift with respect to the training set.

I. INTRODUCTION

Image classification is a long standing challenge in com-
puter vision. It refers to the task of assigning one or a
distribution of classes to a given image [11]. Classifica-
tion, as fundamental computer vision task, is often used to
benchmark network architectures and domain adaptation. In
computer vision systems classifiers can help to provide priors
for subsequent stages.

This paper is concerned with the special case of classi-
fying objects that are heavily occluded. In particular, we
aim to classify images of shelves belonging to one out of
three classes (standing, hanging and bucket). The respective
shelves are part of a shop floor and thus heavily-occluded
by a broad variety of household objects. Figure 1 shows a
representative sample of the class Bucket and an overview
of our proposed approach to solve the problem at hand.
Training a classifier on the available images induces a bias
such that class predictions are primarily made by memorizing
the occluding objects. In order to guide prediction making
towards leveraging image information belonging to the actual
descriptive parts of the image, i.e., the shelves, the occluding
object information has to be removed. Since the occluders
are considered to be unknown during test time, those have
to be treated as unknown.
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Fig. 1. Approach overview: Via class-agnostic segmentation we guide class
prediction towards focusing on relevant image parts.

Existing approaches try to learn a general concept about
objects, for recognizing unseen and unknown objects [8],
[15], [16], [17]. These approaches extract different object
information and employ different strategies based on the
given problem. We are interested in removing the image
information of occluding objects, thus we require instance
segmentation. While [15] and [16] provide segmentation
masks for unseen objects, these methods require depth and
RGB-data for very constraint scene setups: Segmentation
is provided for objects on a table plane from a top view.
This method is not guaranteed to generalize to objects in
arbitrary placements and varying backgrounds. The authors
of [8] provide a method for detecting objects from RGB
images based on learning the general concept of “objects”
but does not provide instance segmentation. In [17], instance
segmentation is provided for a broader range of objects but
a few images of the objects to segment are required for fine-
tuning their approach.

In this work, we are interested to learn the general concept
of “object” in a way that it generalizes to unseen objects
without requiring images of the involved objects, while
also performing instance segmentation. As such, we learn
to produce a joint encoding of diverse household objects,
using objects belonging to the categories household, kitchen,
tool and shape from the YCB dataset [2]. This is done by
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assigning the same class to all objects involved, effectively
learning to separate object instances from background. Using
that encoding, we are able to eliminate the foreground
information that mainly consists of household objects to
improve classification performance of our heavily-occluded
objects of interest.

The remainder of the paper discusses related work in
Section II, provides the problem statement in Section III,
which is followed by a description of our proposed approach
in Section IV and evaluations in Section V. Lastly, Section VI
concludes the paper.

II. RELATED WORK

Image classification is a fundamental problem in computer
vision [9]. As such it is often used to benchmark feature
learning [5], [10], [12] and domain adaptation [1], [3]. In this
paper we are interested in solving the challenging problem
of classifying objects that are containers of smaller objects
and thus heavily occluded by these. If the background is
less dominant than the foreground, foreground-background
separation or salient object detection approaches can be
used for the separation [13]. However, the classification
of images where the majority of the image is comprised
more by occluders than by the object of interest is highly
challenging when no respective annotations are available. In
order to distinguish the occluders from the objects of interest,
detection or segmentation of unseen objects can be used to
synthesize the required annotations.

Class-agnostic object detection is meant to draw bounding
boxes around image regions containing potential unknown
objects [8]. If a few images of the occluding objects are an-
notated with masks, few-shot instance segmentation learning
approaches can be applied [17]. Alternatively, the availability
of annotated data from similar object instances of the same
category enables the learning of the ability to segment unseen
objects [15], [16]. This, however, requires the knowledge of
which object categories are to be expected in the test images.

We aim to generalize instance segmentation to a a broader
range of objects. Thus, we combine class-agnostic object
detection and unseen object segmentation in order to achieve
instance segmentation coming from multiple categories of
objects.

III. PROBLEM DESCRIPTION

Training classification for objects that are heavily occluded
leads to learning to solve the task using all of the image. This,
in turns, leads to feature extraction focusing on extracting
any set of features that minimizes the task loss for the given
training set. However, there is no guarantee that the extracted
features and the decision function yields generality. Table I
presents the recall for successfully classified images on a
set of images of shelves from the same shop floor split into
Training and Val, and one Test set captured in a different
location. The Test set features different occluders that are
unseen during training time. More information on the image
sets is provided in Section V-B.1.

TABLE I
CLASSIFICATION RECALL ON Val AND Test.

Set bucket hanging standing average
Val 1.0 1.0 1.0 1.0
Test 0.08 1.00 0.09 0.39

A significant drop in performance is observed from Val
to Test. We want to emphasis that since we have a 3-class
problem, the classification recall on Test is close to random
output. Thus, the network learns no generalized encoding
relevant for the problem to be solved.

IV. APPROACH

Given a set of images X , each featuring a class C ∈
{1, ...,n} of interest, where the image parts describing the
class information are largely occluded by a set of unknown
objects U . We employ a function ŷ= f (x) to provide segmen-
tation masks y for U in x. Subsequently, x is augmented with
x{ŷ, p} = U {0, ...,255} to eliminate the object information
of U in x. Where p are the pixels in the mask and U is a
uniform distribution. In order to learn a function ĉ = g(x) for
image classification.

A. Unknown Object Instance Segmentation

In order to generalize instance segmentation to arbitrary
objects O, the input data x has to be composed of an object
set Ô sufficiently large and sufficiently diverse to encode
a feature space that effectively interpolates between object
instance o1...n. Thus, Ô has to be chosen in such a way as to
provide a superset of U . Since it is intractable to provide the
whole variety of object types in x, we choose Ô to provide
samples of all the expected object categories, in order to
learn interpolation between objects. We learn a function ŷ =
f (x), where ŷ are the masks of the object instances o1...n.
Class-agnostic segmentation f (x) is enabled by providing
∀o ∈ Ô : on = o. In other words, we map all of Ô to the
same object class. Thus, learning f (x) to separate foreground
objects from background and segmenting the foreground by
finding instances.

B. Classifying Heavily-occluded Objects

To facilitate classification of heavily-occluded images, we
apply f to X . The resulting ŷ provides segmentation masks
for U . The instance segmentations y are subsequently used
to augment training images so that x{ŷ, p}=U {0, ...,255} :
∀o∩∀x ∈ X , thus, replacing foreground object information
of U with random pixel intensities. The resulting augmented
image set Xa is used to learn the function ĉ = g(x). By
eliminating the object appearance of U from X , g can focus
on encoding features relevant for predicting c given xa.

V. EXPERIMENTS

The following section provides implementation details
and experiments. Quantification of the functioning of our
approach is done by providing comparison to standard tech-
niques for improving image classification performance.
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A. Class Agnostic Segmentation
To facilitate class agnostic object instance segmentation of

a broader category of objects, Ô has to be chosen to represent
the variations of the expected objects in the test set.

1) Segmentation Data: Since f (x) is expected to encode
the concept of an “object”, the training data x has to be
chosen that the corresponding y is given in a way that a clear
distinction between foreground objects and background ex-
ists. The expected unknown occluding objects are household
items. As such, training data for f has to be chosen to reflect
the diversity of object appearances with U being household
items. Care has to be taken that the variations in x with re-
spect to aspects such as object placement and interaction, as
well as illumination and contrast are sufficient to generalize
to the domain of X . The YCB-video dataset [14] features
21 objects derived from the YCB-dataset [2]. The objects in
YCB-video belong to the categories food, kitchen, tool and
shape items with diverse setup and scene illumination, thus,
representing diverse object appearances. YCB-video consists
of 92 videos containing 133,827 frames. These are split into
113,199 training and 20,628 validation images.

2) Segmentation Training: In order to show-case the
generality of our class-agnostic segmentation approach we
fine-tune the standard approach for instance segmentation,
Mask-RCNN [4] with Resnet101-backbone [6] pretrained on
ImageNet [11], for encoding f (x). As such, showing that no
specialized network configuration is required, to generalize to
unknown objects. Training is done for one epoch with a base
learning rate of 0.001. The loss is reduced by one magnitude
after 66% and 90% of training iterations, which correlates
with the standard schedule. All 21 YCB-video classes are
trained to be the same class. Consequently, Mask-RCNN has
to learn the common traits that describes an object based
on the YCB-video objects. As a result, we train to predict
anchor locations containing an object of interest, while si-
multaneously predicting per-pixel instance segmentation for
each positive anchor. Non-maximum suppression is applied
to circumvent multiple detections of the same object.

3) Class-Agnostic Segmentation Results: Figure 2
presents exemplary class-agnostic segmentation results for
our shelves training set and YCB-video. On YCB-video,
the results indicate that a joint latent representation is
encoded by f (x). The mean Average Precision (mAP)
for Intersection-over-Union-thresholds (IoU), from 0.5 to
0.95 with a step size of 0.05, is 0.714 for object detection
and 0.676 for object instance segmentation. Instance
segmentation is also predicted on unseen images of the
involved objects. The middle row in the right column also
shows a properly segmented background object that is not
annotated in the training set. An error case occurring on the
images of shelves is visible in bottom image of the right
column. Showing a segmentation mask that includes the
edge of the table connected to the tuna can standing on it.
Similar errors are observable in the shelves images in the
left column showing objects not contained in YCB-video.
For these, the price labels attached to the shelves are often
detected as separate objects or via segmentation masks

Fig. 2. Class-agnostic instance segmentation results on images of our
training set for shelves (left column) and on unseen images of YCB-
video [14] (right column).

Fig. 3. Example images of the sets Train and Val, and Test.

connected to one. This behavior is acceptable since price
tags do not provide useful cues to distinguish between shelf
types. Unknown objects are segmented in most of the cases.
As such, providing a useful basis for eliminating foreground
information from the images to train g(xa) on. Enabling
g(xa) to focus more on background information of x.

B. Image Classification with Heavy Occlusion

Having an f (x) for providing ŷ of U image manipulation
can be applied to X in order to create xa.

1) Classification Data: Training and validation data is
collected in the replica of a shop floor with limited variation
regarding occluders. The procedure is automated such that a
camera is mounted to a robotic arm that pans down in front
of the cupboard containing shelves. Since the aim of this
work is to generalize to a broad variety of potential scenes,
a Test-set is captured in an actual shop floor accessible to
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customers. The shelves have varying characteristics in the
designated sets:
• Hanging provides distinct-shaped hooks to hang prod-

uct. These have the same shape and color in all sets.
• Standing provides storage spaces for different product

separated with transparent plastic dividers. Those di-
viders have the same color in all sets, but the shape is
slightly different, exhibiting a straight edge in Train and
Val, and a chamfered edge in Test.

• Bucket provides bin-like storage cages with severe dif-
ferences in shape and color. Those in Train and Val
have a metallic appearance, inclined front and price tags
attached to the buckets, while those in Test are matt
white, exhibiting a straight front and the price tags are
attached beneath the buckets.

Exemplary images of the sets are presented in Figure 3. Set
sizes are 486, 122 and 106 images for Train, Val and Test,
respectively.

2) Learning Classification: For classification,
Resnet50V2 [5] without pretraining is used as g(x).
Training is done for 50 epochs on Test on the 3-class
problem. We use a learning rate of 10−4, optimizing with
stochastic gradient descent and cross entropy loss.

3) Classification Results: The standard approach to gen-
eralize to novel domains is to augment the training data.
Applying geometric and color space augmentations virtually
increases the training data and decouples estimation making
from some characteristics of the training set.

Thus, we define applying image augmentations to X as
a baseline. In Table II an ablation regarding our applied
augmentations an their influence on the classification perfor-
mance is reported using the classification recall. In order to
guide the network towards more effective discrimination of
image classes we apply MixUp-Augmentation to our training
data. Results are provided for the test set.

TABLE II
ABLATION WITH RESPECT TO AUGMENTATIONS AND THEIR RESPECTIVE

INFLUENCE ON THE CLASSIFICATION RECALL.

Augmentation bucket hanging standing average
None 0.08 1.0 0.09 0.39

zoom (20%) 0.17 0.77 0.43 0.46
rotation (15◦) 0.20 0.72 0.42 0.45

translation(10%) 0.23 0.75 0.32 0.43
shear(λ = 0.1) 0.12 0.96 0.29 0.46
horizontal flip 0.10 0.99 0.28 0.46

brightness(10%) 0.25 0.79 0.29 0.44
MixUp [7] (α = 0.2) 0.26 0.85 0.34 0.48

all 0.42 0.95 0.12 0.50

For unknown object instance segmentation we have to set
a detection threshold for f (x). Table III compares different
detection thresholds using grid search. The intuitive and
usually generally applicable value of 0.5 provides the best
results in terms of average recall over all 3 classes.

Table IV provides results comparing our approach using a
detection threshold of 0.5 to standard augmentations. The last
two columns provide the average over all three classes (2nd

TABLE III
COMPARISON OF DIFFERENT DETECTION THRESHOLDS FOR

SEGMENTING AND MANIPULATING TRAINING DATA, EVALUATED ON THE

Test-SET USING THE AVERAGE RECALL.

threshold bucket hanging standing avg
0.3 0.03 0.64 0.51 0.39
0.4 0.01 0.60 0.61 0.41
0.5 0.02 0.65 0.58 0.42
0.6 0.00 0.59 0.63 0.41
0.7 0.00 0.63 0.51 0.38

to the right) and classes Hanging and Standing (rightmost).
For our approach we use a detection threshold of 0.5 for seg-
menting and augmenting unknown objects. Averaged over all
three classes standard augmentations result in a higher recall
than using our manipulated training data xa. Considering the
classes with little to no difference in appearance in Train/Val
and Test, Hanging and Standing, our approach significantly
improves over standard augmentations. Our approach does
not classify the Bucket of Test as such. Which is to be
expected due to the severe difference in appearance between
Train/Val and Test. This behavior hints that the network is
able to focus more on the relevant background data and spa-
tial relations of the scene, while focusing less on occluding
objects. Combining standard augmentations and our image
manipulation bridges the performance gap between using
only standard augmentations and our image manipulation.

TABLE IV
COMPARISON OF DIFFERENT STRATEGIES FOR TRAINING DATA

MANIPULATION FOR SHELF CLASSIFICATION PRESENTED AS

CLASSIFICATION RECALL.

Aug. bucket hanging standing avg(all) avg(2&3)
None 0.08 1.0 0.09 0.39 0.55

all aug. 0.42 0.95 0.12 0.50 0.54
ours 0.02 0.65 0.58 0.42 0.63

ours+aug. 0.04 0.26 0.95 0.46 0.61

VI. CONCLUSIONS

We present an approach for removing unknown objects
from images to improve the classification performance on
the objects of interest that are occluded by the unknowns.
Further investigations will investigate how significantly class-
agnostic segmentation can improve classification perfor-
mance on highly occluded objects. As such, test data with
more various and diverse object sets as training and test
data for class-agnostic segmentation and classification will
provide useful insight. The research performed in this work
focuses on household objects. We aim to extent the proposed
approach to arbitrary unknown object instance segmentation
to facilitate broader applicability in more diverse domains.
As such, promising future contributions could be made to
open set recognition and learning new objects online.
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Real Estate Attribute Prediction
from Multiple Visual Modalities with Missing Data

Eric Stumpe1, Miroslav Despotovic2, Zedong Zhang2 and Matthias Zeppelzauer1

Abstract— The assessment and valuation of real estate re-
quires large datasets with real estate information. Unfortu-
nately, real estate databases are usually sparse in practice, i.e.,
not for each property every important attribute is available.
In this paper, we study the potential of predicting high-level
real estate attributes from visual data, specifically from two
visual modalities, namely indoor (interior) and outdoor (facade)
photos. We design three models using different multimodal
fusion strategies and evaluate them for three different use cases.
Thereby, a particular challenge is to handle missing modalities.
We evaluate different fusion strategies, present baselines for
the different prediction tasks, and find that enriching the
training data with additional incomplete samples can lead to an
improvement in prediction accuracy. Furthermore, the fusion
of information from indoor and outdoor photos results in a
performance boost of up to 5% in Macro F1-score.

I. INTRODUCTION

Over the last few years, significant progress has been made
in the field of automatic real estate appraisal. While earlier
models have exclusively utilized textual and categorical input
data such as the number of rooms or the floor area [4],
[20], [28] to predict building attributes, recent research has
demonstrated that the inclusion of visual information from
building photographs can be beneficial [21], [14], [29].
Examples include sophisticated price estimation models [21],
machine learning methods for predicting building heating
energy demand [7], but also the analysis methods for ar-
chitectural style [8]. A prerequisite for the development of
efficient machine learning models in the domain of automatic
real estate valuation is the availability of a sufficiently large
and well-annotated dataset. In practice, obtaining enough
data is usually not an issue, but the corresponding anno-
tations are often incomplete or include varying annotation
categories/schemes when obtained from different sources.
This calls for new automated methods to fill such annotation
gaps and missing data.

In this work3, we leverage the information contained in
real estate images to predict high-level real estate attributes
and thereby show a novel way to fill missing data in
real estate databases. Examples for such attributes that we

1E. Stumpe and M. Zeppelzauer are with the ICMT Institute of Cre-
ative Media Technologies, St. Pölten University of Applied Sciences,
St. Pölten 3100, Lower Austria, Austria (estumpe@fhstp.ac.at;
matthias.zeppelzauer@fhstp.ac.at)

2M. Despotovic and Z. Zhang are with the Kufstein
University of Applied Sciences, Kufstein 6330, Tirol, Austria
(miroslav.despotovic@fh-kufstein.ac.at;
zedong.zhang@fh-kufstein.ac.at)

3This research was funded by the Austrian Research Promotion Agency
(FFG) project 880546 “IMREA” and we are grateful to DataScience Service
GmbH for providing the data.

examine are e.g. the type of commercial use of an object (e.g.
“industrial”, “hospitality”, “retail” or “office”) or the general
type of a building, i.e., whether it is a commercial building or
a residential building. Specifically, we use pairs of facade and
interior photos of real estate objects as input which we refer
to as two different visual input modalities in the following.
This means that the input to our method is a pair of indoor
and outdoor images, see also Figure 1. The facade and
interior embody separate visual aspects of the same property
and contain complementary clues for estimating a particular
attribute. Consider the photo pair of Figure 1 as an example
for the task of differentiating between commercial and res-
idential real estate objects. The large window fronts of the
facade image serve as an indicator that this object may be a
commercial office building. Even stronger hints are provided
by the many office chairs in the interior image. This example
illustrates that for each of the two visual input modalities,
different types of information need to be extracted and fused
to successfully predict a particular attribute. To evaluate how
this can be best achieved, in this work we implement and
evaluate three multimodal architectures representing different
fusion approaches with different fusion levels. In addition,
interior and facade photos are not always both available for
each real estate object. We therefore analyze how robust our
proposed models are to missing modalities and whether using
additional incomplete samples in the training set can improve
prediction accuracy.

Multimodal Model

facade  Xfacade
i interior  Xinterior

i

attribute  yattr
i

Fig. 1. Concept of multimodal learning with two visual modalities.

II. RELATED WORK

In this section we first provide an overview of computer
vision methods for real estate analysis and then review re-
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lated work on multimodal image classification and prediction
from missing data/modalities.

A. Real Estate Image Analysis

An early approach on multimodal learning for real estate
analysis, which also utilizes visual information, was pro-
posed by Ahmed et al. [1]. To leverage the image information
of a building, the authors extracted SURF features [2]
from different room types and trained a neural network to
predict the price from both visual and textual features. In
another work by Kostic et al. [14], image entropy, level of
greenness, and features extracted from a CNN pretrained on
ImageNet [6] were used for price prediction. A method for
estimating the age of a building from its visual appearance
was introduced by Zeppelzauer et al. [30] where the authors
extracted patches of interest via SIFT features [17] and
gave them as input to a neural network that predicts the
building age through decision fusion. This method was
extended in Despotovic et al. [7] for predicting the heating
demand of a building. A model based on long-short-term-
memory (LSTM) networks was developed by You et al.
[29]. To achieve a robust estimate of a property’s value,
the LSTM network was also provided with photos from the
neighborhood of the building. Bin et al. [3] took advantage
of attention modules [26] and fused information from both
textual data and satellite images in order to automatically
predict property prices in Los Angeles. Using Crowdsourc-
ing, Poursaeed et al. [21] built a dataset with luxury scores
for different room types. Subsequently, a CNN network
was trained to predict the luxury score of each room and
merge it with textual data to predict the property price. A
comprehensive overview of the emerging trend of image
analysis in the real estate domain has recently been provided
by Koch et al. [13].

B. Multimodal Learning

An important architectural design choice in multimodal
learning is where to fuse the information from different input
modalities. Early fusion models combine all modalities at
the input level, which can be achieved by concatenating raw
data or preprocessed input features [15], [11]. Limitations for
this type of models can arise from differing dimensionalities
and sampling rates of the input modalities [22]. Another
option is to fuse modalities at the decision level of the model
[10], [16], [19], which is usually called late fusion. In this
case, a separate classifier is used for each modality, and the
overall model prediction can be computed by using e.g. the
maximum or average of the predictions or by stacking a
meta-classifier on top. When the information of modalities is
merged throughout the model, it is referred to as intermediate
fusion. This type of fusion can be achieved in a variety of
ways. Wang et al. [27] proposed a strategy for handling
pairs of corresponding RGB images and depth maps. Based
on the batch normalization activation levels of the model’s
intermediate layers, feature map channels are exchanged
between both modalities to replace irrelevant information.
The work of Nagrani et al. [18] has shown that Visual

Transformers [9] can be successfully applied to a multimodal
problem. To exchange cross-modal information in the model
they used attention bottlenecks. In our study we apply the
ideas of Joze et al. [12] for one of our three network variants.
The authors used so-called multi modal transfer modules
(MMTM) between modality-specific CNN streams. These
modules help to recalibrate the magnitude of channel-wise
features in each stream, which will be described in more
detail in section III.

C. Missing Modalities

Sun et al. [23] proposed an image translation method
that can compensate for the absence of single modalities.
They implemented an encoder-decoder architecture for each
modality and arranged them in a cyclical structure during
training so that one image modality can always be recon-
structed from the encoded information of another modality.
In a similar approach, Tran et al. [25] developed a cascading
network of residual autoencoders for the task of predicting
missing modalities. Choi et al. [5] used subnetworks for each
modality, each yielding a feature vector of the same dimen-
sion. Then, a random sampling process is applied which
takes sparse features from each modality and combines them,
improving the ability of the network to compensate for
missing information. In our work, the ability of our models
to handle missing data is not achieved through the network
architecture design, but through data augmentation.

III. APPROACH

The main goal of our work is to develop a network
architecture that can perform the following functions.

1) When provided with an input pair of both a photo of
the building facade X i

facade and from the interior X i
interior

of the same real estate object i, it should be able to
predict the correct class yi

attr of a given category (see
Figure 1).

2) The model should be capable of dealing with missing
modalities, which in this instance refers to either an
absent indoor X i

interior or facade photo X i
facade.

In our method, we handle a missing modality by representing
the missing X i

interior or X i
facade as a black image with all RGB

values set to zero. We further investigate how different fusion
strategies perform in this scenario. To this end, we implement
three model architectures, each representing a different fu-
sion archetype. A full description of these architectures can
be found in Section III-A. The high level attributes which
we investigate are the commercial type, residential type and
object type of a property. More details on these attributes can
be found in IV-A To evaluate our approach, we formulate
the following five research questions (RQs), which we will
answer in Section IV.
• RQ1: What predictive performance can be achieved for

different high-level real estate attributes?
• RQ2: How efficient is the fusion of modalities compared

to using only single modalities during training?
• RQ3: What is the best fusion strategy to merge the

information of the two input modalities?
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• RQ4: Are networks trained on complete pairs of photos
still capable of correctly predicting missing modality
samples?

• RQ5: Does the addition of incomplete data in the
training set lead to better test accuracy?

A. Multimodal Network Architectures

The key to multimodal classification lies in the effective
fusion of information from different modalities. Therefore, in
this work we evaluate the performance of three model archi-
tectures that follow different fusion strategies. For all three
architectures EfficientNet B0 [24] pretrained on ImageNet
[6] is chosen as the backbone architecture to achieve strong
classification performance and to allow a fair comparison
between all architectures. The three multimodal architecture
variants are illustrated in Figure 2 and described in the
following.
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Fig. 2. Overview of the developed network architectures.

Early Fusion: The network architecture in Figure 2 a)
represents the concept of early fusion. Both X i

facade and
X i

interior of every input pair, each of size (224 x 224 x 3)
are horizontally concatenated at the beginning to produce a
single input image of size (224 x 448 x 3). The concatenated
samples are then fed to the EfficientNet B0 backbone, whose
output is a featuremap of size (7 x 14 x 1280). This layer
is followed by a global average pooling and a dense layer
with softmax activation to output the classification scores.

Late Fusion: Here, instead of concatenating the input
images at the beginning, both image modalities are
processed in separate subnetworks and are fused at a later
stage (Figure 2 b)). Therefore, two separate EfficientNet
B0 sub-networks are utilized, which accept input images
of size (224 x 224 x 3). In the fusion stage, the two (7 x
7 x 1280) output feature maps are concatenated along the
channel dimension and are again processed through a global
average pooling layer and a dense layer.

Intermediate Fusion: The third architecture in Figure 2
c) is an extension of the previous one with multimodal

transfer modules (MMTM) introduced by Joze et al. [12].
The concept behind multimodal transfer module blocks is
illustrated in Figure 3. An MMTM block accepts two feature
maps F1,L, F2,L from the same Layer L of the two network
streams 1 and 2. Within the MMTM block, the information
from both feature maps then gets merged through global
average pooling and dense layers to generate two gating
signals s1 and s2. Both gating signals are used to reweight
the importance of each featuremap channel of F1,L and F2,L.
For more details the interested reader can refer to [12]. We
use three MMTM blocks, which connect the outputs of the
first excitation layers of stages 5, 6 and 7 of EfficientNet
B0 [24].

F1,L

MMTM

{

s2
{

s1

F2,L

F1,L+1 F1,L+1

Fig. 3. Concept of multimodal transfer modules (MMTM). F1,L, F2,L
indicate feature maps of both network streams at layer L. s1, s2 are the
generated gating signals.

IV. EXPERIMENTAL AND RESULTS

In this section, we first provide an overview of the datasets
and use cases that serve for the evaluation of our approach.
Furthermore, we provide the training details, including the
used hyperparameters and the evaluation metrics.

A. Datasets and Use Cases

We evaluate our approach with three different sets of real
estate categories and therefore compile the following datasets
with respective class labels, making up three different use
cases (UC) for evaluation:
• UC1 - Commercial type: classes: industrial, hospitality

sector, retail, office
• UC2 - Residential type: classes: apartment, house
• UC3 - Object type: classes: commercial, residential

Each of the respective datasets consists of pairs of facade
and indoor photos taken from real estate objects in Austria
with corresponding class labels. Often, there are several
interior and exterior photos per real estate object. We handle
this case by creating multiple unique samples for each real
estate object. For example, if six interior and three exterior
photos are available for an “office” class commercial object,
we create three interior-exterior pair samples of ground-truth
class “office” by selecting three random interior photos and
assigning one outdoor photo to each. Regardless of whether
there are multiple pairs of photos per real estate object, all
generated samples are assigned the ground truth class of the
associated real estate property.

An overview of these datasets, classes and their partitioning
into training, validation and test set can be found in Table I.
In our experiments we also want to investigate whether
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TABLE I
DATASETS FOR THE THREE INVESTIGATED USE CASES

dataset split UC1: Commercial type UC2: Residential type UC3: Object type
industry hospitality sector retail offices apartment house commercial residential

Train 25 (+30) 30 (+20) 75 (+100) 100 (+50) 300 (+250) 300 (+250) 230 (+200) 600 (+500)
Val 12 (+14) 15 (+10) 37 (+40) 47 (+20) 50 (+50) 50 (+50) 111 (+84) 100 (+100)
Test 14 17 43 50 667 177 124 844

training with additional incomplete data, meaning either
indoor X i

interior or facade image X i
facade is missing, can lead

to an improvement in prediction accuracy. Therefore, we
optionally add incomplete samples to the datasets, where
the respective missing visual modality is replaced by a
black image. The amount of additional incomplete samples
is indicated by the values in parentheses in Table I. When
only complete samples are used during training, we refer
to the dataset as “complete” and when additional missing
samples are added we denote it as “complete + missing”. To
avoid bias in favor of one modality, the number of samples
with missing facades and missing interior in the “Missing”
dataset is kept equal.

B. Training Procedure and Parameters

All experiments are conducted with the following hyper-
parameters. Training is performed for a total of 200 epochs
with a batch size of 16 and a learning rate of 0.0001 using
the Adam optimizer. As a loss function, categorical cross
entropy is used. After each epoch, the updated network
weights are only saved if the validation loss decreases. To
prevent overfitting, we also apply several data augmentation
operations including image flipping, rotation, zoom, shear
and brightness correction. If an incomplete sample is fed to
the network we replace the missing modality with a black
image.

C. Evaluation Metric

Since we have a varying amount of data available for each
class, our test sets also have different numbers of samples. In
our evaluation we nevertheless want to give equal importance
to each class and therefore use the Macro F1-score metric,
which is defined as follows:

Macro F1-score =
1
N

N

∑
i=1

F1-scorei, (1)

where N is the number of classes and i represents the class
label.

D. Experiments

In the following, we provide an overview of our
experiments. We run experiments for variations of
different use cases, modality configurations and multimodal
architectures (independent variables). Details on each
variable are provided below.

Use Cases: Each experiment is conducted on all three
use cases, where each has its corresponding dataset (see
Table I).

Modality Configuration: We further want to evaluate
whether a multimodal learning approach leads to better
results than using only single modality data for training,
which is why we also analyze four different modality
configurations. The first is the default complete configuration,
where all data consists of full pairs of interior and facade
photos. From this we generate two additional single modality
configurations. Specifically, for facade only we modify the
complete configuration by setting all interior photos to
black and do the opposite for interior only. Finally, we
generate a fourth complete + missing configuration, in which
extra missing modality samples are added to the complete
configuration (compare Table I).

Multimodal Architecture: We conduct each experiment
with all three multimodal network architectures (early
fusion, late fusion and intermediate fusion, see Figure 2).

In total this amounts to 36 different experiment
configurations (3 use cases, 4 dataset configurations, 3
network architectures). In addition, we repeat every training
process three times for each experiment to capture the
variations of results originating from different random
initializations of the network weights.

V. RESULTS

In the following, we present our experimental results
and answer the posed research questions from Section III.
The results of all our 36 experiments can be found in
Table II. The presented values are Macro F1-scores for the
respective test sets, which are additionally averaged over
all three training runs. The value inside the parentheses is
the standard deviation over all three training repetitions. To
evaluate the performance when a network receives samples
with missing modality, the same test set is used in three
alterations. test c refers to the test set with complete pairs
(no missing data). test f and test i refer to the same test set,
but here only one modality, facade or interior, is used at a
time, while the other one is blackened to simulate missing
data in the test sets. For an overview of the split for each
modality configuration refer to section IV-A.

With respect to research question 1 (RQ1), Table II
shows that the prediction scores differ greatly between the
different use cases. While the best Macro F1-score for UC1
(Commercial type) is 0.62, the highest prediction value for
UC2 (Residential type) amounts to 0.78. In the UC3 (Object
type) setting, the Macro F1-score reaches 0.81. However, it
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TABLE II
MACRO F1-SCORES AVERAGED OVER THREE TRAINING RUNS AND IN PARENTHESES THE RESPECTIVE STANDARD DEVIATIONS. RB INDICATES THE

RANDOM BASELINE.

Modality
Configuration

Multimodal
Architecture

UC1: Commercial type
(RB = 25%)

UC2: Residential type
(RB = 50%)

UC3: Object type
(RB = 50%)

test c test f test i test c test f test i test c test f test i

complete
early 0.54 (0.04) 0.37 (0.05) 0.42 (0.03) 0.78 (0.01) 0.76 (0.01) 0.58 (0.01) 0.76 (0.04) 0.71 (0.03) 0.70 (0.03)
late 0.54 (0.06) 0.36 (0.05) 0.42 (0.03) 0.76 (0.01) 0.76 (0.01) 0.60 (0.01) 0.77 (0.02) 0.72 (0.01) 0.71 (0.01)

intermediate 0.56 (0.05) 0.41 (0.04) 0.44 (0.02) 0.77 (0.01) 0.76 (0.01) 0.61 (0.01) 0.77 (0.02) 0.72 (0.01) 0.72 (0.01)

facade only
early 0.52 (0.03) 0.72 (0.01) 0.70 (0.02)
late 0.40 (0.06) 0.75 (0.01) 0.66 (0.03)

intermediate 0.41 (0.03) 0.77 (0.01) 0.70 (0.02)

interior only
early 0.41 (0.04) 0.60 (0.01) 0.69 (0.01)
late 0.44 (0.02) 0.61 (0.01) 0.72 (0.01)

intermediate 0.42 (0.05) 0.62 (0.01) 0.67 (0.06)

complete+missing
early 0.57 (0.03) 0.40 (0.03) 0.45 (0.03) 0.75 (0.01) 0.72 (0.02) 0.57 (0.01) 0.77 (0.01) 0.71 (0.01) 0.71 (0.03)
late 0.62 (0.03) 0.42 (0.08) 0.49 (0.02) 0.75 (0.01) 0.73 (0.01) 0.58 (0.05) 0.79 (0.02) 0.72 (0.02) 0.70 (0.02)

intermediate 0.62 (0.03) 0.42 (0.06) 0.48 (0.05) 0.76 (0.01) 0.74 (0.01) 0.55 (0.03) 0.81 (0.01) 0.72 (0.01) 0.75 (0.00)

should be noted that the random baseline (RB) of 50% for
UC2 and UC3 is already much bigger than the respective
25% of UC1. Nevertheless, a large margin over the random
baseline is achieved for all three use cases.

With research question 2 (RQ2) we wanted to discern
whether multimodal learning on both visual modalities is
superior to training on individual modalities. For all use
cases, complete yields better results than facade only and
interior only. There is an increase of 4% of the score for
UC1 compared to the best result for the single modality
configurations. For UC3, the improvement is 5%. Only for
UC2 the performances are almost equal. The reason for the
high score for residential properties is probably due to the
strong difference in the appearance of facades of apartment
buildings and houses, which is also reflected in the similarly
high score of the facade only configuration. Overall, we
can see that training on both modalities provides clear
advantages over using only one modality.

Regarding research question 3 (RQ3: which architecture
is best suited for multimodal fusion?) we do not reach
a clear conclusion. In almost all cases Macro F1-score
differences are within 1% or 2%, which does not allow
for declaring a clear winner when considering the standard
deviations across the three runs. One possible explanation
for why the early fusion architecture produces similar
results compared to the others, is the fact that both visual
modalities concatenated at the input level are RGB images.
Hence, the network does not have to deal with information
of different dimensionality and domains in its initial layers.
It can therefore focus on learning to extract the same
low-level features (e.g. edges), which are representative for
both input modalities. To summarize the answer to RQ3, we
find no significant performance differences between using
early, late and intermediate fusion strategies in the evaluated
use cases.

Concerning research question 4 (RQ4: generalizability
and robustness to missing data) we compare the Macro
F1-scores of the complete configuration for test f and

test i with that of the training configurations interior only
and facade only. Despite the fact that the corresponding
networks of complete have never been exposed to missing
modalities and have only been trained on complete samples
they still provide comparable prediction scores for test f and
test i. Overall the results show that our multimodal network
architectures are capable of handling incomplete input data.

Investigating research question 5 (RQ5) shows that
adding additional data with missing modalities leads to
better results for two of three use cases. In case of UC1, the
increase in Macro F1-score from training on complete to
complete + missing is the largest with almost 6%. For UC2,
scores are at the same level, whereas for UC3 performance
increases by 6%. These results show that the proposed
multimodal network architectures can take benefit of the
information contained in the additional incomplete training
samples.

VI. QUALITATIVE RESULTS

To further investigate especially the limitations of our
approach, we qualitatively analyzed the results. During
our experiments, we found that pairs of images that were
incorrectly predicted by our networks can be systematically
grouped into three main failure types. In this section we
want to showcase these failure types using exemplary pairs
of photos from our test set and their corresponding predicted
labels. For this purpose, we take UC1 (commercial types)
and the predictions from the late multimodal architecture
for the complete + missing modality configuration because
it represents one of the most robust combinations. The
selected pairs of indoor and facade photos are shown in
Figure 4. All pairs are placed in a confusion matrix-like
layout, with true positive samples indicated by a green
background (diagonal samples). The three failure types are
represented by different border colors for the off-diagonal
entries.

Unused Clues (blue): This failure type includes samples
whose class can be easily recognized by the human observer,
but which was not predicted correctly by the network. For
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Fig. 4. Confusion matrix with exemplary predicted images from the testset. A Green Background indicates true positive samples. Colored borders indicate
different failure types (blue: unused clues, orange: conflicting clues, red: missing clues). Photos taken from justimmo4 .

example, pair 2) shows two beds in the interior, which is a
clear indication for a hospitality object. In addition, in pair
3), the depicted retail property was also misclassified as an
industrial building despite having a visible storefront. One
explanation for the failed detection in this case could be that
in our dataset many industrial buildings have a gray colored
floor similar to the one in this pair. In image 9), a lamp
post with a brewery logo can be seen, which is a subtle hint
for a restaurant that a human observer can understand but
was not detected by the network. We hypothesize that this
failure type can be mitigated by increasing the total amount
of training data available. This way, the network receives
more samples from which it can learn relevant patterns.

Conflicting Clues (orange): Some of the samples shown
have visual modalities that contain conflicting information.
The pair 4) shows photos of an office building with a
corresponding looking facade. However, the interior photo
depicts a large hall that could also be found in a typical
industrial building. The opposite case for an actual industry
building can be found in pair 12). Here, the interior photo
displays a conference room suggestive of an office building,
whereas the exterior resembles an industry building. Pair
14) is a clothing store, which can be recognized by the
interior photo. The facade, on the other hand, has nothing
in common with typical storefronts. To reduce this failure
type, increasing the size of the dataset alone may not be
sufficient. In practice, there are often more than two photos
available for a given property, all of which could be used
in a single model to counteract conflicting modalities.
Furthermore, to mitigate such cases, it will be important
to assess the representativeness of an image for the target
class, i.e., to give less characteristic and speaking images
less weight.

Missing Clues (red): The last failure type contains
samples that lack any useful clues for classification. In pair
7) a real estate object with an unusual appearance for an
office building is shown, which represents a difficult task
for our network. Example 11) contains a pair of photos with
little useful information. The outdoor photo is a close-up of
the door, that gives no hints about the rest of the facade, and
the interior photo is a shot of an empty room in suboptimal
lighting conditions. A similar issue is present in pair 8).
The facade is ambiguous and the room is also empty and
lacks information. With respect to this type of failure, the
use of additional input photos per property could also be
beneficial. In practice, however, we expect that for a certain
percentage of real estate objects accurate predictions will
fail due to ambiguous or inexpressive pictures. In such cases
the incorporation of additional data modalities, e.g. textual
descriptions and categorical data can help.

VII. CONCLUSION

In this paper, we demonstrated the effectiveness and feasi-
bility of using visual data for the prediction of high-level real
estate attributes. We leveraged two complementary visual
modalities, compared different multimodal fusion strategies
and evaluated our approach in three different use cases.
Our experiments show that networks trained on both visual
modalities (facade and interior) yield better results than
networks utilizing only one modality. Furthermore, we could
show that our multimodal network architectures provide
robust predictions for input samples, which lack one of the
two input modalities and that additional training data – even
when it is incomplete – can improve the robustness of the
models. In future, we plan to extend the proposed multimodal
architectures to accept an arbitrary number of input images
showing different perspectives of a real estate object.

4www.justimmo.at
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[15] M. Kächele, P. Thiam, M. Amirian, P. Werner, S. Walter, F. Schwenker,
and G. Palm, “Multimodal Data Fusion for Person-Independent, Con-
tinuous Estimation of Pain Intensity,” in Engineering Applications of
Neural Networks, ser. Communications in Computer and Information
Science, L. Iliadis and C. Jayne, Eds. Cham: Springer International
Publishing, 2015, pp. 275–285.

[16] M. Liu and J. Yuan, “Recognizing Human Actions as the Evolution
of Pose Estimation Maps,” 2018, pp. 1159–1168.

[17] D. G. Lowe, “Distinctive Image Features from Scale-
Invariant Keypoints,” International Journal of Computer Vision,
vol. 60, no. 2, pp. 91–110, Nov. 2004. [Online]. Available:
https://doi.org/10.1023/B:VISI.0000029664.99615.94

[18] A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid,
and C. Sun, “Attention Bottlenecks for Multimodal Fusion,”
arXiv:2107.00135 [cs], June 2021, arXiv: 2107.00135. [Online].
Available: http://arxiv.org/abs/2107.00135

[19] B. Nojavanasghari, D. Gopinath, J. Koushik, T. Baltrušaitis, and L.-P.
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A study on robust feature representations
for grain density estimates in austenitic steel

Filip Ilic1, Marc Masana1,2, Lea Bogensperger1, Harald Ganster3 and Thomas Pock1

Abstract— Modern material sciences and manufacturing
techniques allow us to create alloys that help shape our way
of living; from jet turbines that withstand extreme stresses
to railroad tracks that retain their intended shape. It is
therefore an important aspect of quality control to estimate
the microstructural properties of steel during and after the
manufacturing process, as these microstructures determine the
mechanical properties of steel. This estimation has for a long
time been a labor intensive and non-trivial task which requires
years of expertise.
We show that modern deep neural networks can be used to
estimate the grain density of austenitic steel, while also applying
a visualization technique adapted to our task to allow for
the visual inspection of why certain decisions were made. We
compare classification and regression models for this specific
task, and show that the learned feature representations are
vastly different, which might have implications for other tasks
that can be solved via discretization into a classification problem
or treating it as an estimation of a continuous variable.

I. INTRODUCTION

Not all steel is created equally. Other than the ratio of
carbon and other metals that are used in the alloy when it
is being forged to steel, different modes of cooling, heating,
and hardening produce variations in steel. Broadly speaking,
steel can be classified into austenite, martensite, and under
certain circumstances even a mixture of both. Martensite
forms when steel is quenched very quickly, whereas austen-
ite forms through a lengthy cooling process. Even within
the austenite cooling process, there are many factors that
influence the development of microstructures within the steel
that contribute to the graining process, i.e. the formation of
individual grains. Determining the characteristic grain size of
the sample, which is used to determine the grain density, is
important for many applications as it relates to the tensile and
compressive stresses that the material is able to withstand.
These grains and other microstructures of the resulting steel
can - through an extensive etching and cleaning process - be
made visible under a light microscope [10].

Traditionally, austenitic steel grain density is estimated by
costly and labour intensive work done by a metalographer
where etched steel samples are manually inspected under a
light microscope. Currently the most reliable way to perform
this grain density estimate is by including a template, that
is projected onto the viewfinder of the microscope. The
metalographer then uses this template to determine the
grain density by comparing it to the different available
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Fig. 1. A single image of an austenitic steel sample taken with a light
microscope at 100-fold magnification. Our method estimated the overall
density of the sample to be 5.0. The overlayed heatmap is created with
a proposed visualization scheme, detailed in Section VI, that aids in
understanding the decision process of the network, as a pixel-wise density
estimate can show inhomogeneous regions if they are present. Note that the
learned representation is robust enough to ignore sample preparation artifacts
and carbide pockets that have a similar appearance to higher density grain
regions.

templates. Since only a 2-dimensional cross-section of the 3-
dimensional material is visible, grains might appear smaller
or larger than the average grain size within the material due
to the slicing process. It is therefore a requirement that a
judgement is made based on the relative distributions of grain
density within a single slice of the sample.

In this paper, we propose a deep learning-based approach
to estimate austenitic steel grain density from a single image.
We explore how classical cross-entropy-based losses allow to
learn classification models with state-of-the-art performance.
However, we find that classification models - at least in
the domain of grain density estimation - come at a price
when comparing it to similar, albeit slightly less performant
regression models, that show more resilience when dealing
with out of distribution samples, and appear to have a more
robust and human interpretable feature space. We therefore
also propose to use regression-based losses that are capable
of predicting a continuous grain density, at the cost of a slight
decrease in performance.

It is notoriously difficult to explain the decision making
process of deep neural networks, which can often be a
source of confusion when applied and deployed in real world
applications. It is therefore important, to provide tools to
visualize the model’s decisions, and understand the failure
cases and the reasons for a failure. Recently, some methods
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have been proposed to evaluate the confidence by using class
activation maps [32]. We adapt a well known algorithm –
GradCAM [27] – that allows us to visualize local regions
within a single sample, that can a) show us glimpses of the
underlying feature embeddings and whether they really en-
code relevant information that trained metalographers would
look for, and b) give more fine grained analysis of the input
image than just the classification label, shown in Fig. 1.

A challenge of using deep learning models in this domain
is that deep neural networks require large amounts of data
to reach a satisfying degree of robustness. Because the data
acquisition and labeling of steel samples requires thorough
metalographic knowledge, this data is rather scarce. There-
fore, we propose a heavy data augmentation scheme that
allows to generate grain densities of continuous granularity,
even when only whole grain (i.e. 4.0, 5.0, etc.) austenite data
is available, as it often is.

In summary, our contributions are the application of clas-
sification and regression based deep learning models to the
domain of microstructural analysis of austenite steel, with a
focus on the differences in interpretability of the resulting
feature representation that the two modes of learning yield.
Furthermore, we propose a data augmentation scheme which
could be extended to other datasets that are fractal-like or
display self-similarity. We show that its usage improves
performance across a variety of different models. We present
through ablations on classification and regression models that
in general classifiers perform better than regressors in this
setting. However, this improved performance comes at the
cost of a decrease in robustness and interpretability.

II. RELATED WORK

In the past, many insights into material composition and
corresponding material properties were derived from expert
knowledge and experience. Nowadays, data generated by
simulations and measurement systems are becoming more
available, thus moving away from physically-based tests.
Agrawal and Choudhary [1] introduce the term deep ma-
terials informatics in the context of data-driven technolo-
gies and provide a comprehensive overview of challenges
and applications of deep learning with respect to learning
chemical compositions of materials, prediction of crystalline
structures, (3D) microstructure analysis, and microstructure
reconstruction [6]. Furthermore, [12] illustrate opportunities
and current paths, where machine learning will have signif-
icant influence on material science.

Automated detection or classification of microstructures
is the central theme of metallographic studies. Chowdhury
et al [7] use image analysis and machine learning to dis-
criminate whether samples have dendritic morphologies or
not. DeCost and Holm [13] use a feature-based approach to
identify generic signatures of microstructures. These serve
as the basis for a Support Vector Machine (SVM) [8]
classifier to distinguish 7 microstructure classes. Similarly,
Gola et al [17] employ an SVM model for reproducible and
objective microstructure classification and achieve classifica-
tion accuracy greater than 90% for cast iron samples. The

morphological data comes from both optical microscopy and
electron microscopy images, and the mixed microstructure
exhibits a variety of graphite morphologies. An extension of
the classification system to deep learning techniques achieved
95% accuracy on unprocessed electron micrographs of low-
alloy steels [3], [25]. Here, a combination of CIFARNet, a
modification of LeNet [22], and a pretrained VGG16 net-
work [28] were used. Mulewicz et al. [23], [24] distinguish
8 classes of microstructures of different steel grades (C15,
C45, C60, C80, V33, X70, and non-hardened steel) from
optical microscopy images with the aid of a deep network
structure based on ResNet18 [18]. The authors of [15]
train models with U-Net architectures with about 30-50
micrograph samples in order to achieve robust segmentation
for bainite microstructures. To segment microstructures into
four relevant domains (”grain boundary carbide, spheroidized
particle matrix, particle-free grain boundary denuded zone,
and Widmanstätten cementite”), DeCost et al [11] use pixel-
based machine learning [4]. Their segmentation model was
compared to the results of microscopic annotation by met-
alographer using 24 carbon steel samples. Although direct
comparison in microstructures (< 5 pixels) was not possible
and demonstrated the need for high quality training data, it
was still possible to show the effectiveness of deep learning
in the analysis of complex microstructures. Albuquerque et
al. [9] apply a multilayer perceptron with backpropagation to
achieve a microstructure segmentation for cast iron images.
Verification on a test set of 60 images showed high correla-
tion to human ground truth. In this line Bulgarevich et al. [5]
apply a Random Forest classifier to optical microscopic
images of steels for an automated segmentation. Austenite
grain density is a significant variable in the AI system of
Kuziak [21], which allows the estimation of different phase
constituents occurring during the cooling process.

III. DATASET

To perform a density analysis the grains within the steel
need to be made visible. Various types of acids are used
which etch the weak spots of the metal surface, i.e. the
grain boundaries or other impurities of the metal, away
first, leaving behind a darkened appearance. The prevailing
industry standard to measure the grain density within the
material is the ASTM e112 [2] norm. It specifies a 100-fold
magnification at which the optical microscope images are
captured. Therefore all our images are taken with a 100-fold
magnification, and in total consist of 242 images that have
a resolution of 1280×960. We split them into 125 train, 53
validation, and 64 test images, keeping the distribution of
classes balanced.

The dataset contains images from whole-grade densities
ranging from 4.0 to 13.0 with increments of 1.0, and addi-
tionally the grain density 2.5. This range of grain densities
are provided by the manufacturing process at the steel mill.
Fig. 2 shows austenitic steel with various grain densities;
it also shows the variation in appearance that is due to the
different alloys, and variations in the etching process.
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Fig. 2. Samples of varying grain densities. The grain density increases from left to right and exhibits fractal like self similarity at different scales. It does
however produce a variety of artifacts due to the etching process depending on size of individual grains and variation among samples. While the grain
density is fundamentally a continuum, it is often discretized to whole- or half-grades in practice.

IV. GRAIN DENSITY ESTIMATION

The problem of grain density estimation can be framed as
an image classification task, with the increased complexity
that naturally occurring grain density variations might not be
homogeneously distributed across the entire sample. Image
classification has seen a massive shift from hand-crafted
feature detectors towards the use of different deep learning
techniques. When data is limited, a common technique is to
pretrain on a large dataset and only fine-tune the network
to the specific domain. This exploits a good initialization of
the network parameters to learn an adjusted representation of
that smaller domain [26]. Since the amount of annotated data
which contains information about microstructures, including
grain density, is usually limited due to its acquisition cost,
we propose to use fine-tuning with a cross-entropy loss
on a pretrained classification network. To the best of our
knowledge, this popular technique has not been applied to
this setting. The closest work which uses deep learning for
microstructural analysis in steel is [3]. Although this work
is not applied to austenitic steel, nor evaluated with grain
density estimates, we consider it in our comparisons.

Classification allows for the network to learn represen-
tations which project the input data into a feature space
where different classes can be easily discriminated without
any specific ordering. However, due to the nature of steel
grains spanning a continuum of different sizes, we also
consider to frame the grain density estimation as a regression
problem. This allows the network to not only discriminate
between different classes, but also maps to a feature space
that implicitly preserves grain density order.
Classification. We consider a backbone pretrained feature
extractor Φ parameterized by weights θΦ and a classi-
fier Ψ parameterized by weights θΨ. We define o(x) =
Ψ(Φ(x;θΦ);θΨ) as the output logits of the network given an
image x. Then, given y as the one-hot encoding of the ground
truth label corresponding to the N classes (grain densities),
we consider the cross-entropy loss

LCE(x,y;θΦ,θΨ) =
N

∑
k=1

yk log
exp(ok)

∑N
i=1 exp(oi)

. (1)

Regression. We use the same feature extractor and head
as in classification, together with output logit o(x) given an
image x. However, given y as the actual numerical value of

the ground truth grain density, and d = o(x)−y, we define
the regression loss as a smooth `1 loss

LS1(x,y;θΦ,θΨ) =

{
d2

2α , if |d|< α
|d|− α

2 , otherwise
, (2)

where α = 1. This threshold α specifies when the loss
function changes between `1 and `2

2. This loss is less sensitive
to outliers, than the mean squared error and can help prevent
exploding gradients [16].
Data augmentation. As stated earlier, austenitic steel data
for microstructural analysis is costly to acquire and difficult
to annotate correctly. This leads to generally small datasets,
which can be an issue for deep learning models. However,
apart from fine-tuning on pretrained models, another pop-
ular training strategy is data augmentation, which consists
of altering and extending samples from the dataset with
class preserving transformations. The transformed samples
increase the number of images to be learned from and help
the model generalize better, and to have a more robust
representation of the target domain.

The grain density G is determined by N = 2G−1, where N
is the number of grains per square inch at 100× magnifica-
tion. The different grain densities exhibit similar structures
and patterns at different scales with self-similar features.
Therefore, various magnifications of samples with their
corresponding adapted labels can be generated from image
patches to simulate larger or smaller grain densities by crop-
ping and resizing them in accordance with the grain density
formula. Our proposed data augmentation strategy consists
of generating new samples which differ at a maximum of
±0.5 grades from the original. In the case of classification
this is set to a binary ±1.0 to align with our class labels.
In addition we perform the common data augmentation best
practices: random rotations between 0°and 360°, horizontal
and vertical flips, and contrast jitter to simulate possible
changes in the lighting conditions during data acquisition or
variations in the etching strength during sample preparation.
In the experimental sections we will denote the additional re-
scaling during data augmentation as λ (·), and apply the rest
of mentioned transformations to all reported experiments.
Image and crop augmentation. Regression or classifica-
tion can be performed by passing the whole image or crops
of a fixed size to the model. Our proposed data augmentation
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Fig. 3. Two different proposed heads for image classification: Ψfc is defined
as a single fully-connected layer, whereas Ψext is defined with an extension
of 2 more intermediate fully-connected layers. When doing regression, the
last layer is replaced by a single output.

is nearly identical for both of these scenarios with one small
difference. In the case of whole image augmentation, the
re-scaling function λ (·) does not operate within the bounds
of ±0.5, but between 0.0 and −0.5 – analogously 1.0 for
classification. This means that we only generate samples with
a smaller grain density. This is because the re-scaling to a
higher grain density would require generating or replicating
new image regions to fit the space left empty from the re-
sizing. Using the whole image will be denoted as img, while
the use of crops of size 224×224 will be denoted as crop.

Architectures. Due to the relatively small size of the
dataset, retraining state-of-the-art feature extractors such as
ResNet18(Φres) [18] or AlexNet(Φalex) [20] architectures
from scratch yields worse results than using pretrained
models. Therefore, we use pretrained Φres and Φalex models
on Imagenet [14] as the backbones in our experiments. These
two architectures have shown to perform well in different
image classification and regression tasks, some of which
share the domain of microstructure analysis [3]. The two
architectures also represent two paradigms in deep learning;
convolutions alone, or incorporating residual blocks. Further-
more, we propose to use two different heads applied on top
of the feature extractor: Ψfc and Ψext (see Fig. 3). Ψfc is a
single fully-connected layer on top of the feature extractor,
commonly used in fine-tuning from a pretrained model.
The other, Ψext is an extended head with two intermediate
fully-connected layers, to allow for a larger capacity in the
classification or regression head.

Metrics. We evaluate image classification performance with
Top 1 accuracy. However, for regression, exact prediction
of the grade is neither necessary nor effective. A more
comparable metric to classification is to allow for a margin
of ±0.5 around the regressed prediction. If the prediction
lies within the margin we still consider it to be correct.
This relates to the available metalographic data being labeled
either in whole-grain or sometimes in half-grain steps.

Experimental setup. Each network architecture is trained
with Adam [19] with an initial learning rate of 3e-4. Training
spans 1,500 epochs and the final model is chosen from the
epoch with the lowest validation loss before evaluating on the
test split. Each experiment consists of 20 seeds to measure
the robustness to different initializations.
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Fig. 4. Grain density estimation with classification. We compare Azimi et
al. [3] (purple) and our proposed ResNet18-based architecture (green) with
various configurations. We also demonstrate the effectiveness of our data
augmentation λ (crop) on [3].

V. EXPERIMENTAL RESULTS

To assess the performance of the proposed strategies, we
first compare results on classification, then on regression, and
finally we summarize and discuss them together.
Classifying Grain Density. The first approach we consider
is using classification networks to solve the problem of grain
density estimation. We show our results across the different
configurations introduced in Section IV and compare them
in Fig. 4b). Furthermore we compare our models directly to
the approach proposed in [3] (Φazimi). We note that our best
configuration Φcls

res outperforms Φazimi by 19.4% on average,
if Φazimi is trained with their proposed scheme. However, if
we employ our proposed data augmentation pipeline λ (crop)
on Φazimi performance improves and the gap is reduced to
11.3%, yielding an improvement of 8.1% just by using λ (·).
As Φalex never exceeds 60% Top 1 accuracy across the
various settings it is omitted from the ablation figure.

Regarding our results of Φres, we show that training on
whole images results in better performance than training
on image crops. The network heads Ψ show no effect
when training on whole images, and a slight increase of
performance when using Ψext on crops.
Regressing Grain Density. We also investigate using
regression networks to estimate the grain density. In Fig. 5,
we show an ablation of the regression configurations. Φres
outperforms Φalex in every configuration that is comparable.
This is especially impressive as Φres has only roughly 11
million parameters, whereas Φalex has around 60 million
parameters. It is easy to conclude that there is neither a gain
in performance nor a gain in computational cost in using
Φalex. We find that the best performing model is Φres with a
plain Ψfc head, using image crops and our λ augmentation.
This is also shown and summarized in Table I.

Regarding the heads, Ψfc in combination with Φres yields
models that have a smaller standard deviation. This is ex-
plained by the fact that heads with more capacity tend to
over-fit on the limited data, while the pretrained backbone is
robust enough to not degenerate. Another interesting finding
is that passing the whole image (i.e. global information)
through the network generally performs worse across all
tested configurations than using crops, except for one outlier.
This indicates that local information plays a more important
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Fig. 5. Grain density estimation with regression. Comparison of Φres
(green) and Φalex (blue) when training on images (img) or crops (crop),
combined with classifiers Ψ f c (gray) and Ψext (white), and with data
augmentation λ (·).

TABLE I
SUMMARY OF GRAIN DENSITY ESTIMATION

Classification Regression
Crop Image Crop Image

Φres,Ψext 89.91±3.02 98.11±0.09 86.42±7.66 81.98±8.80
Φres,Ψfc 93.02±4.07 97.92±0.58 91.89±2.68 86.98±2.99

role, and that the anticipated inhomogeneities within a sam-
ple do not contribute to wrong estimates, which is surprising
because Classifiers Φcls

res all performed considerably better
with global than with local information. Finally, our data
augmentation strategy λ (·) increases performance by ∼7%
on average w.r.t. Φres. The best model configuration is a
combination of Φres, Ψ f c, and λ (crop), as seen in Table I.

Discussion We generally observe that classification models
outperform their regression counterparts (see Table I). In
contrast to regression which prefers crops to images, we
find that classifiers exhibit preference towards whole images.
This already hints that the learned feature representation for
regression and classification is drastically different, which
we explore further in the following section.

VI. FEATURE REPRESENTATION AND
VISUALIZATION

Interpretability. Visualizing the feature space of learned
image representations is often done to gain insight into
the decision making process. When visualizing embeddings
Φ(x) ∈ R256 from image x, we need to reduce its high
dimensionality to allow for better visual analysis. This step
could be done with methods such as Principal Component
Analysis (PCA) [30] or t-Stochastic Neighbor Embedding (t-
SNE) [29]. We choose PCA since distances in the projection
are preserved, unlike in non-linear projections such as t-SNE.

We forward pass our training samples through Φcls
res and

Φreg
res , with cls and reg denoting the best classifier and regres-

sor network backbones. We then apply the same projection to
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Fig. 6. Classifier Φcls
res(left) and Regressor Φreg

res (right) feature space
visualization with PCA. While classification models outperform regression
models w.r.t. Top 1 accuracy, it might come at a cost. The learned feature
representation of the classifier, while good at separating classes, does not
span the grain density space continuously according to their size. This is in
contrast to regressors that clearly show a grain-density axis.

TABLE II
MEAN ABSOLUTE ERROR ON CLASSES OF UNSEEN GRAIN DENSITIES

Model Train Test Unseen Classes

Best Classifier (Φres,Ψcls
ext) 0.000 0.019 1.038

Best Regressor (Φres,Ψreg
fc ) 0.135 0.216 0.646

the test set and observe where they end up in feature space.
Results are shown in Fig. 6. A drastic difference between the
feature representations of Φcls

res and Φreg
res can be observed. The

embedding space of the classifier does not arrange classes
corresponding to grain densities in any particular order.
Instead, classes form clusters where interpolation in the
feature space does not equal interpolation in grain density.
Contrarily, a very orderly arrangement of grain densities
emerges when learning with regression, as shown in the right
column of Fig. 6. These results are particularly interesting
as we previously show that Φcls

res outperforms Φreg
res by a

significant margin, thus one could relate a more structured
feature space representation to better performance.

Out-of-distribution robustness. In order to investigate if
the ordered grain density feature structures emerging from
learning with a regressor is beneficial, we explore inference
on unseen and out-of-distribution data that does occur in real
world scenarios. We further have metalographers annotate
668 new samples belonging to half-grade density austenite
steel – which finer partition is commonly used in real world
applications – and captured with a similar setup as the data
described in Sec. III. Concretely this new dataset consists
of austenite steel images with classes corresponding to grain
densities ranging from 3.5 to 12.5, in increments of 1.0 –
with only the grain density 10.5 missing.

In Fig. 7, we show the embedding plots of these unseen
classes, both for Φcls

res and Φreg
res . Once more it can be observed
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Fig. 7. Feature embeddings of unseen grain densities on a classification
(left) and regression (right) model. Bottom row shows the regression plot, in
essence a confusion matrix, where each sample is plotted relating its ground
truth and predicted value. The Mean Absolute Error (MAE) is considerably
lower for the regression model.

that the feature space exhibits mostly a continuous represen-
tation of the grain densities in the case of Φreg

res , and Φcls
res ex-

hibits the same clustering behaviour. Not only is this shown
qualitatively in the visualization, but is also quantitatively
established in terms of Mean Absolute Error (MAE) over
the out-of-distribution samples. In conclusion, Table II sum-
marizes our findings by showing that the classifier performs
both better on train and test sets, but generalizes worse to
out-of-distribution samples. In contrast, regression presents a
potential trade-off between the performance of a model and
its interpretability at the feature representation, which allows
evaluation of intermediate grain densities without re-training.

Grain density attention mapping. Work that focuses
on visualization and explainability of convolutional neural
networks has been around almost since their inception [31].
A common technique, especially for classification-based
methods, is the use of class activation map (CAM) [32]
algorithms. Since the grain density estimation is also framed
as a classification problem, we can apply GradCAM [27],
a popular CAM algorithm, to highlight areas in images that
correspond to particular classes. We exploit the fact that an
ordering of the grain density classes exists, which enables
us to analyse image structures that lead to high activations
in the output neurons. This can be used in order to visually
perform a grain density homogeneity estimation.

GradCAM generates attention maps based on the gradients
of a network w.r.t. a particular class and image. We perform
a GradCAM step for every single class given, stack the gen-
erated attention maps, and compute the maximally activated
class value for each pixel. The resulting scalar field is a
pixel-wise class activated discriminative map.

To test the robustness and predictive capabilities of our
proposed architectures we splice together an image consist-

G
ra

in
 d

e
n

si
ty

2.5

5.0

7.5

10.0

12.5

Fig. 8. An artificially spliced image from 4 different grain densities
trained with whole images (left) and crops (right). The overlayed heatmap
is generated by our proposed argmax GradCAM modification to provide
pixel-wise grain density estimates. Best viewed digitally.

ing of 4 individual images of different grain densities. The
images used correspond to those in Fig. 2. The resulting
class attention maps are shown in Fig. 8, for a model trained
on whole images and one trained on crops. We observe that
the classifier network that was trained on whole images has
difficulties to detect the boundaries of the various grain den-
sities, whereas the network trained on crops shows no such
limitation and produces a heatmap delineating the spliced
quadrants very well. The crop trained model processes the
individual crops separately, which are then assembled to
a single attention map. The inhomogeneity detection and
visualisation provided by the crop-trained model could be ex-
plored in future work, because the homogeneity of austenitic
steel is useful for determining its mechanical properties.

VII. CONCLUSION

We explore classification and regression with deep neural
networks for estimating the grain density of austenitic steel
samples taken with optical microscopes. We show that clas-
sification models overall yield better results than comparable
regression models. Our findings show that the learned feature
representation of classifiers and regressors differs drastically.
The feature embedding of regressors yields an interpretable
axis that corresponds to the actual grain density, whereas
classifiers do not seem to encode the grain density as a major
dimension in their feature space, and instead partition it into
rigid, easily separable clusters. This is also reflected in the
results that compare the performance of both types models on
previously unseen grain density samples. Dealing with such
out-of-distribution samples is especially important in the con-
text of real-world applications. Since regression is shown to
be robust w.r.t. out-of-distribution samples while maintaining
accurate grain density estimates, we demonstrate a feasible
way of additional quality control in steel mills. We also show
the adaptation of a popular CAM algorithm to visualize grain
densities and inhomogeneities within a sample, which also
provides insight into the learned feature representation. Due
to limited data, common in these settings, we introduce a
novel data augmentation technique tailored to grain density
estimation, which is shown to improve the performance of
both classifiers and regressors.
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On the Influence of Beta Cell Granule Counting
for Classification in Type 1 Diabetes
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Abstract— Patients suffering with type 1 diabetes show a
major reduction of β -cells within their pancreas. By analyzing
tissue samples containing granules – the insulin-producing units
within the β -cells – we aim to gather more information on the
respective healthy and diabetic phenotypes, which could lead to
further understanding the pathogenesis of the disease. To this
end, we use a deep learning approach to investigate whether
assumptions on the pathological status can be made based on
electron micrograph images of β -cells. To support the decision-
making process we explore whether estimating the number of
granules can be used to aid in discriminating healthy from
diabetic samples. Furthermore, we demonstrate that multi-task
and transfer learning strategies can lead to more accurate
predictions. Finally, this work intends to contribute to a more
in-depth understanding of the structural mechanisms in type
1 diabetes, which is essential to design better approaches to a
tailored treatment.

I. INTRODUCTION

Type 1 diabetes is an autoimmune disease that is charac-
terized by the destruction of insulin-producing β -cells [2].
The body’s immune system attacks its own essential insulin-
producing mechanism within the pancreas thus impeding a
normal blood glucose regulation after food intake. The main
participants in this process are the granules of β -cells that
can be found within the islets of Langerhans in the en-
docrine pancreas. They are composed of an insulin-producing
core and surrounded by a less dense halo, as explained
in [11]. The author further describes how the granules are
suspected to be the focus of the autoimmune-mediated β -cell
destruction due to immunogenic targets. An example of such
granules is shown in Figure 1, where part of a healthy and a
non-obese diabetic (NOD) mouse are shown. Following the
attack of the immune system, the overall number of granules
contained in the β -cells gets drastically decreased and the
remaining β -cells are stressed in trying to maintain insulin
supply [3].

By visually inspecting electron micrograph slices such as
in Figure 1, it is at first glance not trivial to discriminate the
microscopic images between healthy and NOD. Therefore,
an important research question deals with finding features
that allow for distinguishing between β -cells in healthy and
NOD mice. The number of granules that can be found within
β -cells seems to be a strong indicator. Furthermore, there
are hypotheses in the medical domain regarding structural
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3 Core Facility Ultrastructure Analysis, Graz, Austria.
4 Medical University of Graz, Austria.
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Fig. 1. Slices revealing β -cells of a healthy (left) and a diabetic NOD
(right) mouse. Numerous granules, colored in purple, are visible in both
samples. They are characterized by their circular structure containing a dark
insulin-producing core surrounded by its vesicle characterized by its typical
white halo.

changes of the entire β -cell [13] which can result in changed
appearance of the granules regarding shape and size.

We therefore propose a deep learning based approach to
discriminate between slices containing β -cell granules of
healthy and NOD mice. Our focus is to learn a classification
system that can distinguish between healthy and early stage
type 1 diabetes in electron micrograph images of β -cells
with their insulin-producing granules. Further, fueled by the
interesting findings that the number of granules seems to be
able to distinguish to an extent between healthy and NOD
slices (see Section IV), we pursue to train a granule-counting
system that for a given β -cell slice learns to count the number
of granules present in the sample.
To summarize, our main contributions are:

• we demonstrate the applicability of a deep learning
based approach in classifying electron micrograph im-
ages as either healthy or NOD,

• we show that a network can also be trained to estimate
the number of insulin-producing granules in a given in-
put image, and explore the expressiveness of its features
for classification,

• we explore multi-task and transfer learning strategies to
combine classification and counting to help in distin-
guishing healthy from NOD samples.

II. RELATED WORK

To the best of our knowledge, deep learning approaches
have not yet been explored in better understanding disease
formation and progression of type 1 diabetes at the level of
β -cell granules.
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Interestingly, a similar idea was proposed by Zhang et
al. [19], where the authors investigated monkeys with type 2
diabetes with Metabolic syndrome. After using binary seg-
mentation followed by a watershed transform, they were able
to obtain granule instances allowing further post-processing
on important features regarding the granules appearances
such as radius and size of granular core and vesicle.

Regarding type 1 diabetes, extensive research can be found
that is focused on predicting development of diabetes by
means of machine learning, which was partly also analyzed
by a survey conducted recently [16]. Tripathi et al. [14]
and Xue et al. [17] aim to predict the development of
type 1 diabetes by incorporating risk factors such as blood
pressure and blood glucose level by using Random Forests
and Support Vector Machines based on statistical measures
such as accuracy and precision. On the other hand, Zaitcev
et al. [18] train a neural network to model long term average
glucose levels from 5-12 weeks of daily measurements
whereas Alfian et al. [1] focus on modeling blood glucose
levels in the next 30-60 minutes to combat hypoglycemia, a
condition with too low blood glucose levels that can become
dangerous for affected patients. None of these approaches
have been applied to electron micrograph images, which are
not applicable in situ in clinical practice.

These feature-based approaches are obviously very rele-
vant in practice to predict the risk of patients developing type
1 diabetes or to model blood glucose levels of patients that
already suffer from the disease. Deep learning techniques
can be very helpful to enhance prediction and diagnosis
of disease development and progression and thus improve
living conditions of those affected. Indeed, these approaches
can also be used in the process of better understanding
the nature of type 1 diabetes and the mechanisms that are
triggered at the levels of insulin-producing granules within
the β -cells. However, research on this data can hardly be
carried out on humans since the tissue cannot be harvested
from living humans and donors from deceased patients are
often at a stage where the disease has progressed further and
no granules are left within the β -cells. Therefore, conducting
this research on mice is a well-suited alternative that allows
for results to advance the process of better understanding the
pathogenesis of type 1 diabetes.

III. METHODOLOGY
A. Classification and Granule Counting

Discrimination between healthy and NOD tomographic
β -cell images can be defined as a binary classification prob-
lem. We propose to learn an encoder – or feature extractor –
which provides a feature representation of the input images
onto a latent space that can be used to solve the classification
and granule counting tasks (see Figure 2). In the proposed
setting, data is scarce due to its acquisition and annotation
costs. Therefore, we propose to use ResNet-18 [5] initialized
with pre-trained weights on ImageNet [4] as the encoder.
Pre-trained models on large datasets have shown to provide
good feature representations that allow for a more robust
initialization and faster training when fine-tuning on small

images

classification

healthy

…

NOD

granule counting

∑

encoder

FC

Fig. 2. Proposed architecture to learn classification and/or granule counting.

tasks [8]. Since the output feature space of those pre-trained
models are usually of high dimensionality, we propose to
include a fully-connected layer between the backbone and
the classifiers to enforce a dimensionality reduction. The
objective function that is minimized to learn the network
parameters is the binary cross-entropy loss

LC(y, ŷ) =−
1
N

N

∑
n=1

(yn log(ŷn)+(1− yn) log(1− ŷn)), (1)

where yn is the true label and ŷn the predicted label for
each sample n. Meanwhile, for counting the number of
granules present in an input image the problem is framed
as a regression task. Therefore the backbone of the feature
encoder is appended with a fully-connected layer, where the
network’s output is the estimated number of granules. In this
case the mean squared error is used as the objective function
during learning

LR(y, ŷ) =
1
N

N

∑
n=1

(yn− ŷn)
2, (2)

where a strong penalization for higher deviations in the pre-
dicted number of granules from the groundtruth is desirable.

B. Multi-task and Transfer Learning

We assume that granule counting can help discriminate
between healthy and NOD samples – we show that this as-
sumption holds in Section IV-B. Traditionally, there are two
popular strategies in which both tasks can be incorporated
into the learning process to benefit each other during training.
The first is multi-task learning [12], where both tasks are
learned together at the same time on different heads from the
shared fully-connected layer. To this end, the loss function
is the weighted combination of the binary cross-entropy loss
and the mean-squared error

Ljoint(y, ŷ) = λLC(y, ŷ)+(1−λ )LR(y, ŷ). (3)

where λ ∈ (0,1) is the trade-off between the two tasks.
Learning both tasks ensures that the learned, shared feature
space contains meaningful representations for both tasks,
either helping each other with shared discriminative features,
or with regularization over the capacity and importance of
the learned features.

Further, as mentioned above, fine-tuning over pre-trained
models has been shown to be a useful means of transferring
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good mid-level representations [8]. This idea can be extended
beyond models trained on large datasets to smaller tasks
also via transfer learning [9]. Therefore, we propose that
the backbone and fully-connected layer are trained on the
regression task to then use the resulting model as an initial-
ization for learning the classification task – each task learned
on the corresponding head. The underlying intuition is that
features which have been learned during granule counting
can be beneficial for the classification process since these
tasks are shown to be related by the discriminative capacity
of the number of granules for healthy and NOD samples.

C. Evaluation Metrics

The accuracy for binary classification is given by

A (y, ŷ) =
1
N

N

∑
n=1

δ (yn, ŷn),

with δ (i, j) =

{
1 if i = j,
0 else,

(4)

where δ is the indicator function. To quantitatively evaluate
the potential of the estimated number of granules to clas-
sify between healthy and NOD samples, another evaluation
criterion is required. We propose a new metric to compute
regression accuracy which searches for the optimal threshold
θ ∗ of granules per sample. This threshold separates below
and above which samples are predicted to be NOD or healthy,
respectively. On training data, it is found by

θ ∗ = argmax
θ

A (y, ŷθ ), (5)

where ŷθ is the predicted label based on the threshold θ .
Then, once fixed, samples from the test set are classified
solely based on the number of counted granules, whereupon
the accuracy in Equation 4 can be computed.

D. Dataset

Our underlying objective to the presented methodology is
to gain novel insights into the mechanisms of β -cell loss
via use of neural networks capable of analyzing images
containing insulin-producing β -cells. Autophagy, apoptosis,
and endoplasmatic reticulum stress are indicators of stress re-
sponses in NOD β -cells after immune system attacks, which
are expected to have an influence on the produced insulin
through a changed appearance of the granules themselves or
through the overall number of granules that are available for
insulin production. Therefore, we created a dataset to obtain
electron micrographs of pancreata of healthy and NOD mice
at different ages. Ultrathin sections (70 nm) are stained
with platine blue and lead citrate. Non-overlapping areas
of pancreatic islets are then pre-selected and analysed by
transmission electron microscopy (FEI Tecnai G2) at 120kV.
All images were acquired with a magnification of 2,500×
and have a resolution of 1024×1024.

The dataset consists of 362 tomographic images from
β -cells of healthy C57BL/6J and NOD mice (3/3), which
are widely used in type 1 diabetic research [7], [10]. An
exemplary image of each group is shown in Figure 1. The

y=1, y=1 y=0, y=0 y=0, y=1 y=0, y=1

Fig. 3. Examples of correctly classified (left) and misclassified (right)
samples from the test set, where y denotes the true class label, and ŷ the
predicted label. Class labels 0 and 1 denote healthy and NOD, respectively.

y=57, y=56.2 y=4, y=5.1 y=27, y=26.4 y=37, y=46.4

Fig. 4. Examples of granule counting estimation on samples from the test
set, where y denotes the groundtruth number of granules, and ŷ the predicted
number. The rightmost image is the one with the highest counting error on
test, probably due to the presence of immature granules and granules from
α-cells, which were not included in the training data.

slices are non-overlapping and cover several distinct β -cells
within each pancreas. The dataset is split into 200 training
images and 62 testing images, while ensuring that available
data from each individual mouse is either part of the train
or the test set.

E. Experimental Setup

The chosen encoder backbone is ResNet-18 [5] pre-trained
on ImageNet [4]. On top of the encoder, a shared fully-
connected layer of size 512× 256 is added to reduce the
dimensionality of the latent space before the regression
and the classification head. By definition of the losses in
Section III-A, the first head has 2 outputs representing the
binary classification probabilities of healthy and NOD, while
the second head has a single output which predicts the
number of granules present in the image.

Input images are pre-processed in the same fashion as
the encoder backbone was pre-trained. Images are resized
to 224× 224 followed by standard data augmentation tech-
niques consisting of horizontal and vertical flips. In addition,
histogram equalization is applied to all images to compen-
sate for uneven illumination and differences in microscopic
settings. During training, we use Adam optimization [6]
with an initial learning rate of 1e-4 for classification and
1e-3 for counting regression, and exponential decay rates of
β1=0.9,β2=0.999.

IV. RESULTS

A. Classification

Classification results on the test set achieved an accuracy
of 93.54%. Figure 3 shows examples of correctly and mis-
classified samples, where class 0 and class 1 indicate healthy
and NOD, respectively.
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Fig. 5. For both the train (left) and test set (right) in the regression task, the predicted vs. the groundtruth number of granules are displayed with their
true class labels. The tendency that healthy samples contain more granules than NOD can be visually observed in both cases.

B. Granule Counting

Training the model on granule counting yields a mean
absolute error of 2.78. Examples of granule estimation on
the test set are shown in Figure 4. Deviations from the
groundtruth number of granules might arise due to the fact
that β -cells contain other cellular components with circular
structures that may resemble granules and are thus hard to
distinguish. The maximum absolute error obtained across all
test images is 9.38, shown at the rightmost of Figure 4. This
image contains some immature granules and α-cell granules,
which the network has not learned to discriminate from
β -cell granules due to the limited presence of α-cell granules
during training. Furthermore, it has to be noted that it is
challenging even for human observers to agree on the exact
number of granules, since some imaged granules are out of
focus or subject to some microscopic acquisition artefacts.
Therefore, we argue that the predicted number of granules is
within reason to assume that the model has learned the task
properly.

Figure 5 shows the predicted number of granules per
sample with respect to the groundtruth. We observe a similar
light underestimation on both train and test for images
with more granules and a neglectable overestimation for
images with lower granule count. Furthermore, each sample
is labeled with its true class label, where for both train
and test data a relation between a larger/smaller number of
granules and a healthy class label 0/NOD class label 1 can
be observed.

C. Granule Counting for Classification

As seen in the previous experiment, using the number of
estimated granules in a given sample can be an approx-
imate indicator to classify it as either healthy or NOD.
Therefore, we apply the optimal threshold search proposed
in Section III-C to the granule counting model results on
training data. We provide the curve profile of the training
data and the corresponding optimal threshold θ ∗ in Figure 6.
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Fig. 6. Evaluation of the classification accuracy on samples, where solely
the regression task of counting granules has been trained. Classification
accuracy is obtained by thresholding at θ number of granules per slice.
Above that threshold value a sample is considered as healthy. Setting
the threshold to θ ∗= 32 granules/slice yields the maximum classification
accuracy of 69.36% within the training data.

Classification results on the training data yield a maximum
accuracy of 69.36% (θ ∗ = 32). With the learned θ ∗ = 32
applied to the test data, an accuracy of 74.19% is achieved
– that is separating solely by granule count. The fact that
the accuracy on test is higher than train highlights how the
model was not directly trained for the classification task,
although it can perform significantly well on it. Doing a
Welch’s t-test [15] on the estimated number of granules per
sample based on the true class label yields a t-statistic of 4.96
with a corresponding p-value of 6.3×10−6, which further
emphasizes the strong significant difference in number of
granules between healthy and NOD.

D. Joint Granule Counting and Classification

Following the results presented above, granule counting
can help distinguish between healthy and NOD images. As
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TABLE I
SUMMARY OF THE RESULTS ON THE INFLUENCE OF β -CELL GRANULE

COUNTING FOR CLASSIFICATION.

test accuracy

only classification 93.54%
only counting regression 74.19%
joint (λ =0.8) 95.16%
transfer learning (counting → classif.) 96.77%

mentioned in Section III-B, we can then exploit this synergy
to propose a joint training of both tasks. We simultane-
ously train both tasks under the same architecture using
Equation 3 and with the balancing parameter λ . A grid
search over λ ∈ {0.5,0.6,0.7,0.8,0.9} shows that the best
result on the train set is obtained at λ =0.8. Setting λ =0
or λ = 1 yields the baselines of training only regression
or classification, respectively. As expected, classification is
given more emphasis since it is the main task at which we
evaluate, and we hypothesize that counting granules helps in
classification in the sense of a regularizer that learns a better
feature representation. This joint multi-task training achieves
a classification accuracy of 95.16%, which improves with
respect to solely classification or regression, as summarized
in Table I.

E. Transfer Learning

Finally, we apply transfer learning from the network
trained on granule counting by training classification on
top of it. This strategy achieves an accuracy of 96.77%,
which surpasses all other results (see Table I). Although the
performance of transfer learning is slightly above that of the
joint training, we can not exclude that an unexplored λ trade-
off exists, which provides a better accuracy. In conclusion,
both strategies which exploit the knowledge provided by
counting granules when learning to discriminate between
healthy and NOD samples outperform the strategies which
only rely on a single task.

Table II shows an instance where granule counting has a
positive impact on the healthy/NOD classification for both
joint training and transfer learning. Both healthy samples
were predicted as NOD by using only classification. Due to
granule counting, which for both samples is rather high, the
prediction changes to the correct class when evaluated on the
joint or transfer learning models. In the case of joint training,
we also provide the prediction for counting.

V. CONCLUSION AND FUTURE WORK

We use a deep learning based approach to achieve high
classification accuracy when discriminating between healthy
and NOD samples of β -cells. We further show that there is a
strong link between the number of granules in a sample and
the healthy/NOD class it belongs to. We apply this insight to
train a neural network that jointly learns both classification
and counting tasks, to improve performance on classification.
Further, we explore the concept of transfer learning where
a network pre-trained on granule counting can be beneficial

TABLE II
POSITIVE INFLUENCES OF β -CELL GRANULE COUNTING ON

CLASSIFICATION FOR JOINT TRAINING (LEFT) AND TRANSFER

LEARNING (RIGHT).

only
GT classification joint

48 - 45.6
0 1 0

only
GT classification transfer

- - -
0 1 0

when fine-tuning it on classification, which also yields an
improved accuracy. The multi-tasking and transfer learning
approaches allow for a more robust representation by in-
cluding the additional counting task. This can be especially
useful in the medical domain, where often only limited data
is available but related additional tasks can be defined in a
similar fashion.

The findings strongly support the underlying hypothesis
that early onset diabetes leads to a reduction in insulin-
producing granules. Nevertheless, classification on its own
already delivers strong results. This indicates that there are
additional factors other than the number of granules that
play a major role in the decision process, such as changed
appearances in the granules themselves or the surrounding
tissue. Therefore, it is planned to expand this analysis to a
larger scale once more data has been acquired, which can be
a time-consuming process, but will allow to draw conclusions
that are statistically reliable.
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Computed Tomography Reconstruction
Using Generative Energy-Based Priors

Martin Zach1, Erich Kobler2, and Thomas Pock1

Abstract— In the past decades, Computed Tomography (CT)
has established itself as one of the most important imaging
techniques in medicine. Today, the applicability of CT is only
limited by the deposited radiation dose, reduction of which
manifests in noisy or incomplete measurements. Thus, the need
for robust reconstruction algorithms arises. In this work, we
learn a parametric regularizer with a global receptive field by
maximizing it’s likelihood on reference CT data. Due to this
unsupervised learning strategy, our trained regularizer truly
represents higher-level domain statistics, which we empirically
demonstrate by synthesizing CT images. Moreover, this reg-
ularizer can easily be applied to different CT reconstruction
problems by embedding it in a variational framework, which
increases flexibility and interpretability compared to feed-
forward learning-based approaches. In addition, the accom-
panying probabilistic perspective enables experts to explore
the full posterior distribution and may quantify uncertainty
of the reconstruction approach. We apply the regularizer to
limited-angle and few-view CT reconstruction problems, where
it outperforms traditional reconstruction algorithms by a large
margin.

I. INTRODUCTION

Throughout the past decades, Computed Tomography
(CT) has become an invaluable tool in diagnostic radiology.
However, along with its ever-increasing usage have come
concerns about the associated risks from ionizing radiation
exposure [6]. Approaches that try to remedy this problem
include hardware measures such as tube current reduction or
modulation (for instance in the form of automatic exposure
control [37]), adaptive section collimation [15], or angular
under-sampling [11], [10]. Such measures are now standard
in clinical CT systems, but require robust reconstruction
algorithms.

Classical CT reconstruction algorithms include Filtered
Back-Projection (FBP) [8], [18], which has been super-
seded by more robust iterative algebraic reconstruction tech-
niques [36], [40] in clinical practice. In light of dose reduction,
these algorithms may be equipped with prior knowledge to
increase reconstruction quality of low-dose scans. Traditional,
hand-crafted regularizers, such as Total Variation (TV) [35]
and extensions such as Total Generalized Variation (TGV) [5],
typically encode regularity assumptions of the reconstruction,
such as sparsity of gradients. These hand-crafted regularizers
have been used extensively and successfully in reconstruction
problems [13], [26], [41], however they do not fully model

1Institute of Computer Graphics and Vision,
Graz University of Technology, 8010 Graz, Austria
{martin.zach,pock}@icg.tugraz.at

2Institute of Computer Graphics, Johannes Kepler University Linz, 4040
Linz, Austria erich.kobler@jku.at
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Fig. 1. Our proposed method is able to reconstruct images from noisy,
limited-angle and few-view measurements (denoted by the subscripts n, la, fv)
satisfactorily.

the a-priori available information. To capture also higher-
order image statistics, the idea of learning a regularizer from
data emerged [43], [34], [23]. Although these learning-based
approaches are now dominant in many fields, such models
have classically focused on modeling local statistics and leave
much to be desired in modeling global dependencies.

From a statistical point of view, any regularizer R induces
a Gibbs-Boltzmann distribution

pR(x) =
exp(−R(x))∫

X exp(−R(ξ )) dξ
, (1)

where X is the space of all possible images. Ideally, samples
x ∼ pR should be indistinguishable from samples from the
underlying reference distribution, which is hardly possible
for hand-crafted regularizers.

In this work, we propose a novel generatively trained
regularizer utilizing a global receptive field that yields high-
quality reconstructions even in case of strong noise or heavily
undersampled measurements. In Fig. 1, we show how our
model is able to satisfactorily reconstruct CT images from
noisy (i.e. low tube current) and incomplete (i.e. limited-angle
or few-view) data without observable artifacts. In fact, using
this regularizer we can synthesize naturally appearing CT
images without any data (see Fig. 4). In contrast to feed-
forward formulations [4], [12], we cast the reconstruction as
a variational problem. This helps interpretability of the trained
regularizer by means of analyzing its induced distribution as
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well as the posterior distribution of any type of reconstruction
problem. We apply a trained model to limited-angle and few-
view reconstruction problems, and compare our approach
quantitatively and qualitatively with traditional reconstruction
algorithms. In addition, we perform experiments which
leverage the probabilistic nature of our approach, such as
prior and posterior sampling.

To summarize, we
• define a novel network architecture capable of synthe-

sizing natural CT images without measurement data,
• demonstrate that our regularizer outperforms classical

algorithms in typical reconstruction problems, and
• show that our probabilistic approach allows to compute

the pixel-wise posterior-variance, which in turn is related
to uncertainty quantification.

II. RELATED WORK

A. Learning-based CT Reconstruction

In recent years, there has been a strong shift from
hand-crafted regularizers towards data-driven reconstruction
schemes. The learning-based methods can be applied in the
sinogram domain [4], [19], such that the final image can
be reconstructed using traditional reconstruction algorithms.
Alternatively, a preliminary reconstruction may be computed
using the (noisy and possibly incomplete) sinogram, which
can subsequently be enhanced by a trained convolutional
neural network (CNN) [12]. An alternative learning-based
reconstruction approach is to learn a direct mapping from
the data domain to the image domain [42]. However, this
requires to learn a wealth of parameters solely to compute
an approximate inverse of the forward acquisition operator.
Another recently popularized approach is to learn an unrolled
iterative reconstruction algorithm [20], [2], [24]. Whilst the
results look promising, we point out that such approaches typ-
ically assume a particular acquisition setup and, at inference
time, can only be applied in settings that are very similar to
the training setting.

B. Generative Models as Regularizers in Medical Imaging

Energy-based models (EBMs) have a long history in the
field of image processing [25]. However, only recently some
works [17], [29] have explored their generative capabilities,
rivaling the performance of Generative Adversarial Networks
(GANs). While GANs have been used as an implicit prior for
reconstruction problems in medical imaging (e.g. [1]), to the
best of our knowledge, using EBMs capable of synthesizing
natural images at full-scale as regularizers in medical imaging
is still largely unexplored.

III. METHODOLOGY

In this work, we represent CT images of size n = nw×nh
pixels as vectors x ∈ Rn. The subsequent analysis easily
generalizes to image data in any dimensions. Acquiring nθ
projections with nd detector elements, the post-log sinogram
f ∈ Rm of size m = nθ ×nd is given by

f = Ax+η , (2)

where A : Rn→ Rm is the acquisition operator, and η ∈ Rm

represents the additive measurement noise, summarizing
photon statistics, thermal noise in the measurement channels,
and pre-processing steps. The linear acquisition operator A
is defined by the geometry of the measurement setup, and
throughout this work we assume that both A and η can be
characterized up to reasonable precision.

A. Bayesian Modeling

To account for measurement uncertainties and missing
data in the observations f , we adopt a rigorous statistical
interpretation of (2). Bayes’ Theorem relates the posterior
probability p(x | f ) to the data-likelihood p( f | x) and the
prior p(x) by

p(x | f ) ∝ p( f | x)p(x). (3)

Here, p(x | f ) quantifies the belief in a solution x given a
datum f . In the negative log-domain, (3) is transformed to

E(x, f ) := D(x, f )+R(x), (4)

where we identify the data-fidelity term D : Rn×Rm→ R+

modeling the negative log-likelihood − log p( f | x), and the
regularizer R : Rn → R modeling the negative log-prior
− log p(x). The energy E : Rn×Rm → R assigns a scalar
E(x, f ) to any (x, f )-pair, and in the sense of (3) is interpreted
as the negative log-posterior − log p(x | f ).

Typically, D makes use of the forward operator A to
quantify the agreement between the reconstruction of x and
the measured data f . R may for instance represent the TV
semi-norm [35], which is well known to favor piece-wise
constant solutions. For the sake of simplicity, we assume η to
be Gaussian, and consequently set D(x, f ) = 1

2σ2 ‖Ax− f‖2,
where σ2 denotes the variance of η . We discuss the choice
of R in the next section.

B. Parameter Identification

Although many hand-crafted choices for R exist, such as
TGV [5] or wavelet-based approaches [16], it is generally
agreed upon that modeling higher order image statistics should
be based on learning [43]. In contrast to the widely adopted
feed-forward approaches, in this work we retain the variational
structure to allow statistical interpretation. To account for the
parameters, we extend (4) to

E(x, f ,φ) := D(x, f )+R(x,φ), (5)

where R : Rn×Φ→ R is parametrized by φ in the set of
feasible parameters Φ. We illustrate our particular choice of R
(for two-dimensional input images) in Fig. 2 and emphasize
that the input image is reduced to a scalar only by means of
(strided) convolutions. Here, φ summarizes the convolution
kernels and biases, and Φ reduces to Rnp , where np is the
total number of parameters.

The Bayesian separation of of data-likelihood and prior
allows us to train our regularizer generatively without any
measurement data as follows. We denote by pφ the Gibbs-
Boltzmann distribution of R(·,φ) in the sense of (1), to
emphasize the dependence on the parameters. Assuming
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Fig. 2. Our proposed architecture follows a typical encoder structure. The
subscripts specify filter size and stride and the annotations show the spatial
resolution of the feature maps and the number of features.

access to a distribution px of reference CT images, we identify
the optimal parameters φ ∗ by minimize the negative log-
likelihood

φ ∗ ∈ argmin
φ∈Φ

{Γ(φ) := Ex∼px [− log pφ (x)]}. (6)

In the seminal work of [21], it is shown that the gradient of
(6) with respect to the parameters φ is given by

∇1Γ(φ) = Ex+∼px [∇2R(x+,φ)]−Ex−∼pφ [∇2R(x−,φ)], (7)

where ∇l denotes the gradient w.r.t. the l-th argument. We
discuss the estimation of the expectations in both terms
extensively in Sec. III-C.

We highlight that (6) does not require any (x, f )-pairs. That
is, for training we do not require access to measurement data
but only to (the usually much more ubiquitous) reference
images. Moreover, a trained regularization model serves as
a drop-in replacement for hand-crafted regularizers for any
reconstruction problem by adapting the data-fidelity D to
account for a particular forward operator A and noise statistics.

C. Model Sampling

While the first term in (7) is easily approximated given
any dataset, the second term requires sampling the induced
model distribution, which is known to be hard in high
dimensions [7]. For any reasonably sized image x ∈ Rn

computing the partition function is infeasible, hence the
distribution has to be approximated using Markov Chain
Monte Carlo (MCMC) techniques. In this work, we utilize
the unadjusted Langevin algorithm (ULA) [32], [31], [33],
which makes use of the gradient of the underlying probability
density function to improve mixing times of the Markov
chains. The ULA algorithm read as

xk ∼N (xk−1+
ε
2

∇1 log pφ (xk−1),βεIdn), k = 1, . . . ,K, (8)

where N (µ,Σ) denotes the normal distribution on Rn with
mean µ and covariance Σ. β ,ε ∈R+ are appropriately chosen
scaling parameters, and K denotes the total number of steps.
To aid the convergence of the Markov chains, we further
follow the idea of persistent chains [38] and use a buffer in
which the states of the chains persist throughout parameter
updates.

D. Experimental Setup

For all the following experiments, we set n f = 48, resulting
in np = 12179905 and set the ReLU leak coefficient to 0.05.

Algorithm 1: Maximum Likelihood training of an
EBM. U (X ) denotes the uniform distribution on
X and each r denotes an independent sample from
U ([0,1]).
Input : px, σdata, nbuffer, pre, K, φ , ne, ε , β
Output : φ approximately minimizing (6)

1 B←{u1, . . . ,unbuffer}, ui ∼U ([0,1]n)
2 for t = 1, . . . ,ne do
3 x+ ∼ (px ∗N (0,σ2

dataIdn)),x0 ∼B
4 Generate x− with (8) using x0, ε , K, β
5 if r > pre then xrefill = x−

6 else
7 if r > 0.5 then xrefill = x+

8 else xrefill = u∼U ([0,1]n)
9 end

10 B←B \{x0}∪{xrefill}
11 φ ← Adam(∇2R(x+,φ)−∇2R(x−,φ))
12 end

We trained the regularizer on the Low Dose CT Image and
Projection dataset [27], where the images were downsampled
to 128× 128. We optimized (7) using Adam [22] with a
learning rate of 5×10−4 and set the first and second order
momentum variables to β1 = 0.9 and β2 = 0.999. To stabilize
training, we convolved px with N (0,σ2

dataIdn), where σdata =
1.5×10−2. We used a batch size of 25 and a replay buffer
holding 8000 images with reinitialization chance of pre = 1%.
Samples in the buffer were reinitialized with an equal chance
of uniform noise or samples from the data distribution. To
sample pφ , we ran (8) with K = 500, using ε = 1 and β =
7.5×10−3.1 We summarize the training algorithm in Alg. 1.

For the reconstruction problems, we used accelerated
proximal gradient descent [28], as summarized in Alg. 2 with
J = 1×103, γ1 = 0.5, γ2 = 1.5−1. We solve the proximal
operator prox: Rn→ Rn, which for H : Rn→ R and τ ∈ R+

is defined as

proxτH(y) = argmin
x

τH(x)+
1
2
‖x− y‖2

2 (9)

using 10 iterations of the conjugate gradient method. In what
follows, the forward operator A assumes a parallel-beam
geometry with nd = 362 detectors of size 1 pixel and is
discretized using the ASTRA toolbox [39]. Unless stated
otherwise, η is 0.1% Gaussian noise.

IV. RESULTS

A. Induced Prior Distribution

For most hand-crafted regularizers, there typically exists a
geometrical interpretation. For instance, it is well known that
TV is related to the perimeter of the level sets of an image [9].
Hence, the influence on the reconstruction is fairly easily
understood. Our regularizer can hardly be interpreted in such

1Similar to [30], we reparametrize the regularizer as R
T for a-priori chosen

T , such that ε = 1 in (8).
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Algorithm 2: Accelerated proximal gradient descent
with Lipschitz-backtracking.

Input : initial α , f , x0, φ , J, γ1 ∈ (0,1), γ2 ∈ (0,1)
Output : xJ+1 approximately minimizing (5)

1 x1 = x0

2 for t = 1, . . . ,J do
3 x̄ = xt + t

t+3 (x
t − xt−1)

4 g = ∇1R(x̄,φ)
5 for ever do
6 xt+1 = proxαD(·, f )(x̄−αg)

7 Q = R(x̄,φ)+ 〈g,xt+1− x̄〉+ 1
2α
∥∥xt+1− x̄

∥∥2
2

8 if R(xt+1,φ)≤ Q then
9 α ← α/γ1

10 break
11 else α ← γ2α
12 end
13 end

a way, however the energy-perspective allows for a statistical
analysis by means of the Gibbs-Boltzmann distribution pφ .

One of the main characteristics of any distribution are
the points which locally maximize the density (modes).
By (1) it is easily seen that the modes of pφ conincide
with local minima of R(·,φ). However, modes may occur as
spikes in regions of generally low mass, and thus samples
may represent the underlying distribution more accurately.
Therefore, we inspect our regularizer by computing modes
as well as samples.

We find x ∼ pφ using Langevin sampling (8) with K =
40000 steps, and find argminx R(x,φ) with Alg. 2 using
D(x, f ) = 0. In both cases, we set x0 ∼U ([0,1]n). We show
the trajectories of xt during minimzation of R(·,φ) and
samples x∼ pφ in Fig. 3.

The results indicate that our model is able to synthesize
natural CT images without any measurement data. This is in
stark contrast to other priors typically used in medical imaging
(see e.g. [1, Fig. 1] for samples drawn from hand-crafted
priors).

B. Limited-Angle and Few-View Reconstruction

In this section, we shift our focus towards CT reconstruction
problems, where we first treat the reconstruction problem as
a deterministic mapping in the maximum a-posteriori (MAP)
sense. Specifically, we denote by x∗ : Rm→ Rn the model-
optimal reconstruction identified by the mapping

x∗( f ) ∈ argmin
x
{D(x, f )+R(x,φ)}. (10)

Further, let px̂ denote a distribution on Rn×Rm of (problem-
dependent) ( f ,x)-pairs of a (noisy and incomplete) datum f
and the corresponding reference image x.

To illustrate the capabilities of our trained regularizer, we
first consider a limited-angle reconstruction problem. Specif-
ically, we reconstruct an image from nθ = 270 projections
uniformly spaced over the quarter-circle θ ∈ [0, π

2 ]. We show

TABLE I
E( f ,x)∼px̂

[PSNR(x∗( f ),x)] FOR LIMITED-ANGLE (θ ∈ [0, π
2 ]) AND

FEW-VIEW (nθ ∈ {100,50,30,20}) RECONSTRUCTION.

FBP SART TV Ours

limited-angle θ ∈ [0, π
2 ] 19.05 27.72 29.67 34.21

few-view

nθ = 100 37.15 43.86 46.77 49.47
nθ = 50 33.12 37.05 40.21 45.06
nθ = 30 28.78 33.04 35.33 41.65
nθ = 20 25.24 30.55 31.77 38.48

qualitative results in Fig. 4 (top), where the FBP recon-
struction exhibits smearing artifacts that are characteristic
of limited-angle CT. Simultaneous Algebraic Reconstruction
Technique (SART) [3] and additional TV regularization help
remedy this problem somewhat, however the reconstruction is
not satisfactory. We observe unnatural disconnected contours
in the reconstruction, especially around the thorax. On the
contrary, our model is capable of reconstructing a natural
looking image with realistic anatomy and high level of detail.
We show E( f ,x)∼px̂ [PSNR(x∗( f ),x)] in Tab. I. The results are
in accordance with the qualitative analysis, with our model
improving the TV reconstruction by over 4.5 dB.

In contrast to limited-angle CT, in few-view CT data are
acquired over the full half-circle θ ∈ [0,π]. However, on this
half-circle only nθ � projections are sparsely acquired. In
traditional reconstruction algorithms, the sparse data manifests
itself as streaking artifacts around sharp contours, where
subsequent projections do not properly cancel each other.
Such artifacts can clearly be seen in the FBP reconstruction
in Fig. 4 (bottom), where we show the results for a nθ = 20
few-view reconstruction problem. TV regularization yields
a sharp and largely artifact-free image at the cost of losing
almost all details. Our method can reconstruct the image
satisfactorily, where artifacts are removed whilst retaining
small details. Tab. I shows quantitative results, with our
approach consistently beating the reference methods for all
nθ ∈ {100,50,30,20} by a large margin.

C. Posterior Analysis

Instead of treating R as a point estimator in the maximum
a-posteriori sense (10), the Bayesian formulation allows to
explore the full posterior distribution of any given reconstruc-
tion problem. This is especially useful in the medical domain,
where interpretability is of utmost importance. To this end, we
perform Langevin sampling of the posterior distribution (3)
with the same parameters as in training. We show some
illustrative examples for limited-angle and few-view CT in
Fig. 5. The figure shows samples ξ ∼ p(x | f ,φ) = pφ (x)p( f |
x) from the posterior distribution associated with Eq. (5) as
well as it’s expectation and variance. For the limited-angle
reconstruction, we observe large variance around regions of
high ambiguity, where there exist no projections to define
contours. Similarly, for the few-view problem, there is high
variance around small structures such as the vertebrae or blood
vessels in the lung. For both problems, the approximated
expected value over the posterior also yields a visually
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Fig. 3. Trajectories of the images from uniform noise to argminx R(x,φ) along with the corresponding R(xt ,φ) (left) and samples x∼ pφ from the Langevin
process (8) after K = 40000 steps (right).

Reference

Reference

Reference

FBP

FBP

FBP

SART

SART

SART

TV

TV

TV

Ours

Ours

Ours

Fig. 4. Comparison between FBP, SART, TV, and our method for limited-
angle (θ ∈ [0, π

2 ], top) and few-view (nθ = 20, bottom) CT reconstruction.
Our model is able to faithfully reconstruct the image, whereas the other
methods are not able to fully remove the smearing and streaking artifacts.

appealing, although somewhat over-smoothed, reconstruction.

D. Out-of-Distribution Application

1) Uncertainty Quantification Through Posterior Variance
Analysis: To study how the variance relates to uncertainty,
we perform the following experiment: We introduce unnatural
(read: not present in the training data) structures into the image
by overlaying the “cameraman” image and an example of the
“grid” texture from the Describable Textures Dataset [14] on
a reference scan. Subsequently, we approximate the variance
of a few-view reconstruction problem using nθ = 20 views
by Langevin sampling.

We show the expected value and variance over the posterior

ξ ∼ p(x | f ,φ) Eξ∼p(x| f ,φ)[ξ ] Vξ∼p(x| f ,φ)[ξ ]

Fig. 5. Sampling the posterior of a limited-angle (θ ∈ [0, π
2 ], top) and

few-view (nθ = 30, bottom) CT reconstruction problem: The three images
on the left show different samples during the sampling process, the two
images on the right show the expected value and variance of the posterior
distribution respectively.

for the clean and corrupted scans in Fig. 6. Although the
bulk of the cameraman shows low variance (and indeed the
reconstruction looks natural in these regions), we observe
high variance in unnatural regions, such as the artificially
introduced corners and the tripod. Similarly, compared to the
reference scan the grid overlay leads to high variance in the
posterior.

In general, we believe that high posterior variance is related
to model uncertainty. To be more specific, we expect high
variance if the measurement data suggests structures that are
not consistent with the training data. This could potentially
aid in detecting pathologies in images.
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Reference Eξ∼p(x| f ,φ)[ξ ] Vξ∼p(x| f ,φ)[ξ ]

Fig. 6. Comparison of the posterior distribution of a corrupted (top two)
versus clean (bottom) scan: The high variance around the corrupted regions
(highlighted) relates to high model uncertainty.

2) Generalization: In Sec. IV-A we have shown how
samples x ∼ pφ resemble data drawn from px — that is,
R encodes a prior in the frequentist sense. With this, a natural
question is if our proposed regularizer can be applied to
reconstruction problems where the underlying distribution
deviates far from px. To study this, we propose the following
experiment: We let

xκ = rotκ(x)+η , (11)

where rotκ : Rn → Rn is the bi-linear rotation operator of
angle κ and η is 10 % Gaussian noise and find

x∗ ∈ argmin
x

1
2σ2 ‖x− xκ‖2 +R(x,φ). (12)

The results in Fig. 7 show that performance quickly deterio-
rates with increasing κ . This is in line with our expectations,
since our regularizer models global characteristics of the
reconstruction which are not rotation invariant.

V. CONCLUSION

In this work, we designed a parametrized regularizer
utilizing a global receptive field, which we trained on
full-scale CT images by maximizing their likelihood. The
induced Gibbs-Boltzmann distribution of the trained regu-
larizer strongly resembles the data distribution — that is,
our model is capable of synthesizing natural CT images
without any data. The maximum likelihood framework does
not assume any particular forward acquisition operator or
noise statistics, and the trained regularizer can be applied to
any reconstruction problem. In limited-angle and few-view
reconstruction problems, we observed significantly improved

0 10 20 30 40

28

30

32

34
κ 7→ Ex∼px [PSNR(x∗(xκ ), rotκ (x))]

Fig. 7. Performance of the regularizer on out-of-distribution data: For
denoising rotated images, the PSNR quickly decays even for small rotations.

quantitative and qualitative performance when compared to
classical reconstruction algorithms. Further, we were able to
relate the variance in the posterior with unnatural structures
in the underlying image, as is the case for certain pathologies.

In summary, we believe that learning energy-based models
capable of truly capturing the underlying distribution is a very
promising direction for future research. Such models yield
natural reconstructions with severely undersampled and noisy
data, where data consistency can be enforced with arbitrary
data terms. We also want to emphasize that training requires
only reconstructed images, which are typically much more
ubiquitous than image-data pairs. Future work includes the
extension to higher resolutions used in clinical practice today,
and tackling the problem of scale- and rotation-invariance.
Further, a rigorous mathematical analysis in the context of
inverse problems, stability w.r.t. training and measurement
data would improve the applicability in clinical practice.
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SliTraNet: Automatic Detection of Slide Transitions in Lecture Videos
using Convolutional Neural Networks

Aline Sindel1, Abner Hernandez1, Seung Hee Yang2, Vincent Christlein1 and Andreas Maier1

Abstract— With the increasing number of online learning
material in the web, search for specific content in lecture videos
can be time consuming. Therefore, automatic slide extraction
from the lecture videos can be helpful to give a brief overview
of the main content and to support the students in their studies.
For this task, we propose a deep learning method to detect slide
transitions in lectures videos. We first process each frame of the
video by a heuristic-based approach using a 2-D convolutional
neural network to predict transition candidates. Then, we
increase the complexity by employing two 3-D convolutional
neural networks to refine the transition candidates. Evaluation
results demonstrate the effectiveness of our method in finding
slide transitions.

I. INTRODUCTION

Nowadays, there is a huge number of online learning
material available to students and researchers. Lecture videos
uploaded by the universities to video sharing platforms such
as YouTube or to in-build video platforms are accessible
from anywhere and at any time. The high amount of video
material makes it tedious for the user to search for specific
content by browsing through the individual videos. Hence,
video summarization can help to quickly grasp the overview
of the lecture video. This can be done by the automatic
detection of slide transitions to extract the slide and time
stamp at each slide change. Automatic detection of slide
transitions can also support the lecturer in creating lecture
notes. In combination with the audio transcript of the lecture
video, the extracted slides can be automatically inserted into
the audio text based on their time stamp. For instance, the
free video-to-blog post conversion software AutoBlog [21]
automatically extracts the transcript of a lecture video to
generate a blog post [9]. So far, the slides are manually
inserted into the blog text. However, using our slide transition
detection method, the software could be extended.

The variety in the types of lecture videos makes the task
challenging. For example, the lecture slides can be full screen
with the lecturer screen inserted as a small window on top,
or the lecture slides can be depicted next to the view of the
lecturer. Further, memes (e.g. animations and short videos) to
illustrate the lecture content can be inserted into the lecture
video. Memes and the actual slides can have very similar
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Fig. 1: Overview of our SliTraNet for slide transition de-
tection: First, we predict initial slide-slide or slide-video
transition candidates by comparing each frame (cropped to
the slide content) to its respective anchor frame using a
2-D ResNet. At the transition candidate positions, we extract
overlapping video clips with a length of eight frames from
the cropped video and the raw video. Two 3-D ResNets have
been trained to extract spatio-temporal features to classify the
cropped video clips into hard or gradual transitions, static
slides or video sequences and the raw video clips into slide-
video transitions, slide sequences or video sequences. Lastly,
we combine the class predictions of both 3-D ResNets to
exclude transitions mutually classified as video sequence.

frames from the style and color distribution. Thus, lecture
videos that not only contain the slides and the speaker’s view,
but also these meme videos make the task even more difficult.

In this paper, we propose a deep learning method for the
detection of slide transitions in lecture videos, which we
train and test on a dataset that contains video sequences of
lectures with slides, speaker views, and memes. To detect
the slide transitions, we present a multi-step approach. First,
we predict initial transition candidates by inserting a 2-D
convolutional neural network (CNN) into a heuristic-based
approach. Then, we extract spatio-temporal features at the
candidate positions using two 3-D CNNs to exclude transi-
tions that were classified as video sequences.
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II. RELATED WORK

This section summarizes related works in the field of slide
transition detection, scene boundary detection, and video
thumbnail selection.

A. Slide Transition Detection

Traditional approaches to slide detection focus on low-
level features to measure the similarity across adjacent
frames. For example, the maximum peak of the color his-
togram and difference in entropy for horizontal lines were
used to detect slide changes in [14]. Often the use of
histograms for slide detection is supplemented with other
algorithms to detect features such as faces, or text [20], [29].
Similarly in [2], histograms are utilized for shot boundary
detection as part of a larger scheme involving shot classifi-
cation, slide region detection, and slide transition detection.

The variance in image scaling and rotation can be han-
dled by the Scale Invariant feature transform (SIFT) algo-
rithm. This approach detects slide transitions when the SIFT
similarity is under a defined threshold. Features extracted
using the SIFT algorithm have shown good slide detection
accuracy rates in [10], [22] and with slide alignment [28].
SIFT features can also be used with sparse time-varying
graphs [17], where the graph models slide transitions. The
temporal modeling of slide transitions can also be conducted
using a Hidden Markov Model (HMM), where the states
of the model correspond to an individual slide [5], [24],
[3], [4]. The likelihood of the states are computed with a
correlation measure and the most probable sequence of slides
is calculated using the Viterbi algorithm.

The current study approaches the slide transition detection
problem by using 3-D CNNs which can learn spatio-temporal
features that are useful for detecting slide transitions. How-
ever, the training time and memory consumption can be prob-
lematic. Therefore, Residual Networks (ResNet [8]) have
been suggested by [18] for this task. They propose a novel
residual block that contains an extra 1×1 3-D convolutional
layer to the shortcut connection layer. They show better
results for ResNet compared to the traditional slide transition
approaches on their to 6 frames per second temporally down-
sampled dataset. In [6], a Dual Path Network (DPN) [1] that
combines both ResNeXt and DenseNet is proposed. Further,
they introduce a Convolutional Block Attention module to
their network that sequentially infers a 1-D channel attention
map, followed by a 2-D spatial attention map, and lastly a
1-D time attention map. Further improvements in the F1-
score were obtained compared to traditional approaches or
with ResNets alone.

B. Scene Boundary Detection

A related field of work is scene boundary detection or shot
boundary detection (SBD) [11]. Traditionally, SBD relied on
the same low-level features such as histograms. However, the
issue of detecting changes is complex and requires attention
to the variability of transitions. Detecting gradual transitions
is a particularly difficult problem and recent studies on
SBD now take into consideration the presence of sharp cut

transitions and gradual transitions. For example, a 3-D CNN-
based model from [7] was combined with an SVM classifier
to label frames as being either normal, a gradual transition,
or a sharp transition. In [15], both types of transitions are
detected by separate 3-D CNNs. A similar approach using
deep CNNs was taken by [27] where SBD was implemented
via a three stage process; candidate detection, cut transition
detection, and gradual transition detection. TransNet [26]
and TransNet2 [25] use Dilated DCNNs to detect sharp and
gradual transitions.

C. Video Thumbnail Selection

Another related area is video thumbnail selection, which
summarizes the video content by selecting a representative
frame as the thumbnail. To extract the representative frames,
learning-based approaches have been proposed that take the
user’s perspective selection of representative frames into
account [12], [19]. Based on visual features, the videos are
classified according to image quality, visual details, user
attention, and display duration [12], or different types of
camera motion [19]. Approaches also combine the visual
content with side semantic information such as the title or
transcript for query-dependent thumbnail selection [16] or to
visually enrich the thumbnail with keywords [30].

III. METHODOLOGY

In this section, our method for slide transition detection
is presented. We describe the network architectures and
introduce training and inference of the different parts of the
pipeline.

A. Overview of SliTraNet

SliTraNet is composed of three convolutional neural net-
works, which are all separately trained for the three different
tasks and combined for inference, see Fig. 1. We process
the complete data once by applying a 2-D ResNet18 [8]
to pairs of each frame with its anchor frame resulting in
initial slide-slide or slide-video transition candidates. For the
refinement step, we increase the complexity of the networks
by using two 3-D ResNet50s and apply these to video clips
extracted from the transition candidate positions. A short
video clip of eight frames can contain a sequence with one
hard transition, a gradual transition, a static sequence of
the same slide or a sequence of video frames, such as a
short animation, a speaker view, or a meme. We train one
3-D ResNet for these four classes and another 3-D ResNet
to distinguish slide-video transitions, slide sequences, and
video sequences. Based on the class predictions, we exclude
transition candidates that were classified as video sequence
by both networks.

B. Initial Transition Candidates Estimation

We train a 2-D ResNet18 for the discrimination task
whether two images are from the same slide (class 1) or
not (class 0). For this task, we concatenate both images
along the color channel dimension to obtain 6 channels for
RGB input or 2 channels for grayscale input and modify the
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(a) Detection of a static slide sequence

... ...

Source of meme video: Jubar_, "Generated Simpsons characters using StyleGAN by Nvidia", 2020, https://youtu.be/csLj6KxCBdE

(b) Detection of a video frame sequence

Fig. 2: Comparison to anchor frame using a neural network to detect static slide sequences and video sequences.

input channels of the ResNet18 [8] architecture accordingly.
For training, we generate the same number of positive and
negative pairs. For the negative pairs, we first select frames
from the neighboring slides for each slide and then fill the
rest with randomly chosen frames that have a different slide
id. For the optimization, we employ the binary cross-entropy
loss.

To predict the transition candidates, we plug the neural
network into a heuristic-based approach, as illustrated in
Fig. 2a and 2b. We compare each frame to an anchor frame
by the neural network to search for static slides (Fig. 2a).
As long as both frames are classified as the same, we keep
the anchor and as soon as the two frames are classified
as different, we set the anchor to the current frame. A
static slide is detected if the time, measured in number
of frames, is higher than a threshold. This general idea
is borrowed from Perelman [23], which uses the absolute
difference of the blurred grayscale versions of the frames.
Since the lecture videos also contain video sequences without
slides, we extended the approach further by adding two video
anchors, see Fig. 2b. If a frame difference is detected by
the neural network and the time from the current frame k
to the anchor k − 1 is smaller or equal to the threshold,
the video anchor and previous video anchor are set to the
current frame k. As long as the frames are not classified
as the same, the video anchor is updated. After the next
static slide sequence is detected, a video sequence is recorded
from the previous video anchor to the video anchor and both
anchors are deleted. The slide-slide and slide-video transition
candidates are determined from the detected static slide and
video sequences.

C. Transition Candidates Refinement

Since the video sequences can also contain static frames
that might be classified as static slides using the deep-
heuristic-based approach, a refinement step is necessary
to reduce the number of false positives. To better exploit
the spatio-temporal character of the video, we train a
3-D ResNet50 using cross-entropy loss for the multi-task
classification problem that assigns a short video clip of
eight frames to one of the classes: hard transition, gradual
transition, static slide and video. The network architecture is

depicted in Fig. 3, which is slightly adapted from the 3-D
ResNet backbone in [13]. For the initial layers and 3-D max
pooling, we modified the strides of the temporal dimension
to be 1 to only reduce the spatial dimensions.

The slides of lecture videos are not necessarily filling the
full screen, but can be placed on top of some background. In
our particular lecture video dataset, the memes, animations
and speaker video sequences are full screen in contrast to
the slides, see Fig. 4. Using this knowledge, we use the raw
video input to train our second 3-D ResNet50 to classify
the short clip into slide-video transitions, slide sequences or
video sequences.

For training both networks, we extract video clips at
striking positions such as placing the middle of the clip (plus
minus one frame) at the position of the hard transition, the
begin, middle and end of the gradual transition and in the
middle of a static slide sequence or at some equally spaced
positions within the video sequence. For the second task,
the slide-video transitions occur only rarely in the dataset in
comparison to slide sequences or video sequences. Hence,
we use the weighted cross-entropy loss to account for the
frequency of the classes.

During inference, we use the predictions of the deep-
heuristic-based approach to extract the video clips to feed
them to the 3-D ResNets and based on the output of both
networks, we filter out slide transition candidates that were
classified to be video sequences by both networks.

IV. EXPERIMENTS AND RESULTS
In this section, we describe our dataset and measure the

performance of our method.

A. Lecture Video Dataset

The dataset comprises a subset of lecture videos from
two courses in the field of deep learning and medical image
processing of the Pattern Recognition Lab, FAU Erlangen-
Nuremberg. The videos are recorded in Full HD with 25
frames per second and range between a duration of 6 to 33
min. The slides of one course are in the format 4 : 3 and
of the other in 16 : 9. The dataset is split into 12 videos
for training, 4 for validation and 14 for testing. To feed the
data to the network, the frames are cropped to the content
of the slides except for the video-slide differentiation task
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Source of meme video (class 3): Mobileye an Intel Company, "Sensing the Driving Scene", 2017, https://youtu.be/42rmGs0Rvtw

Fig. 3: Training of 3-D ResNet50 for the multi-class classification task: detection of hard transitions, gradual transitions,
static slides, and videos. For each input clip one class is predicted. The numbers in orange indicate the number of output
feature maps of each convolutional layer or block and the numbers in purple denote the output dimension of the temporal
dimension.

Source of meme 1: CTP 1111 "Time Lapse of Flammagenitus or Pyrocumulonimbus clouds 

from the Loyalton Fire", 2020, https://youtu.be/zISr9AA2oow

Source of meme 2: YOLO Object Detection, "YOLO v2", 2016, https://youtu.be/VOC3huqHrss

Fig. 4: Frames of the lecture video dataset. Top row: raw
video frames, bottom row: cropped frames.

(see Fig. 4) and for all tasks are scaled to a maximum
length of 256 and filled up with zero padding to a patch
size of 256× 256. The ground truth slide transitions were
obtained semi-automatically. Based on the difference of
the frames, static slides were roughly detected and were
manually corrected at frame level and split into hard and
gradual transitions.

B. Implementation Details

We trained all networks from scratch for 100 epochs
with early stopping using the following training parameters:
learning rate η = 2 ·10−4, linear decay to 0 starting at epoch
50 for 2-D ResNet18 and 60 for 3-D ResNet50, Adam solver,
momentum (0.9,0.999), batch size of 64 for 2-D ResNet18
and of 32 for 3-D ResNet50 for training and validation
and online data augmentation for the training data split
(color jittering, horizontal flipping, color inversion, Gaussian
blurring with kernel size in range 1 to 21, reversed ordering
of the clips and one frame offsets at clip extraction). For
inference, the threshold for static slides is set to 8 frames.

C. Qualitative and Quantitative Evaluation

We evaluate our method using precision, recall, and F1
score of slide transitions for our test dataset. Since the grad-
ual transitions are annotated and predicted by our method as

frame intervals, we compare the closest euclidean distances
of the start and end points of the predicted and labeled
transitions to a threshold of 20. This comparison is performed
bi-directionally and the mutually valid counts determine the
number of true positive transitions.

The quantitative evaluation results are summarized in
Tab. I. In the top rows, we compare the first step of our
approach using the 2-D ResNet18 (trained and tested in RGB
and grayscale) to the traditional approach inspired by [23]
of using the frame difference with Gaussian blur (kernel size
ks = (21,21)) in RGB and grayscale. From these methods,
the grayscale 2-D ResNet achieves the highest F1 score,
which is slightly above 50 %. The 2-D methods have a high
recall but a low precision due to their high number of false
positives. The frame to anchor comparison detects many
false positive transitions for video frames, where short static
sequences alternate with motions.

Hence, the second part of our pipeline is necessary to
reduce these false positives, whose results are shown in the
bottom rows of Tab. I. Using the combination of the first step
and the 3-D ResNets a performance gain in the F1 score of up
to 35 % is achieved, i.e., our SliTraNet reaches an F1 score of
almost 90 %, which is closely followed by the combination
of difference + 3-D ResNets. This second step maintains the
high recognition rate while decreasing the number of false
positives, resulting in higher precision, which is partly due
to the spatio-temporal convolutions in the 3-D ResNets that
recognize the different transition types better than the 2-D
approach.

Additionally, we evaluate how the order of the networks
influences the result by reversing the order. First, we apply
the 3-D ResNet to classify overlapping video clips of length
8 into slide-video, slides and videos. We use the slide-video
and slide candidates to apply the next 3-D ResNet to classify
the remaining clips into the transition types, static slides and
videos. We iterate through the potential transition regions and
apply the 2-D ResNet pairwise to localize slide changes. This
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TABLE I: Evaluation of precision, recall, and F1 score of slide transition detection for the test set with 14 videos. In the
top rows is the comparison of the first step of the approach: 2-D ResNet18 versus difference with Gaussian blur in both
color and grayscale. In the bottom rows the combination of the above methods with the 3-D ResNet50 (in color) and the
application of the three networks in reverse order (first 3-D then 2-D) is shown.

Number TP FP FN Precision Recall F1 score
of transitions

Ground Truth 380 380 0 0 100.00 100.00 100.00

Diff-RGB-blur 992 365 627 15 36.79 96.05 53.21
Diff-gray-blur 1011 365 646 15 36.10 96.05 52.48
2-D ResNet18-RGB 1188 358 830 22 30.13 94.21 45.66
2-D ResNet18-gray 911 355 556 25 38.97 93.42 55.00

ResNets-Reverse-RGB-gray 366 303 63 77 82.79 79.74 81.23
Diff-RGB-blur + 3-D ResNet50-RGB 435 364 71 16 83.68 95.79 89.33
Diff-gray-blur + 3-D ResNet50-RGB 442 364 78 16 82.35 95.79 88.56
SliTraNet-RGB-RGB 453 357 96 23 78.81 93.95 85.71
SliTraNet-gray-RGB 408 354 54 26 86.76 93.16 89.85

(a) A true positive gradual transition

(b) One false negative transition in an animated slide

Source of meme video: Autodesk Research, "Exploring Generative 3D Shapes Using Autoencoder Networks", 2017, https://youtu.be/25xQs0Hs1z0

(c) A false positive transition in case of memes

Source of meme video: ML6, "Age interpolation in StyleGAN's latent space", 2019, https://youtu.be/x3pdf9S60zo

...

(d) One false negative transition due to fast slide change after meme insertion

Fig. 5: Qualitative results for slide transition detection using SliTraNet: Correct and failure cases.

approach with an F1 score of around 81 % misses more slide
transitions than the competing methods and due to the high
complexity in the first two steps consumes a long execution
time. In contrast, SliTraNet takes less than 90 min to process
the 190 min test data.

Overall our SliTraNet demonstrates high effectiveness in
the task of slide transition detection in lecture videos, which
is also confirmed by the qualitative evaluation. In Fig. 5 some
difficult cases are depicted to highlight the advantage of our
method and also define some limitations. One difficulty is
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represented by animated slides, where little content changes
in a short time. Fig. 5a shows an example of a correctly
detected gradual transition, where the start and end point
are marked by the blue arrow. From the hard transitions
in Fig. 5b only the right one is detected by SliTraNet.
A plausible reason for the failure of the network for the
first transition is the small difference of the two frames
as only thin lines appear that connect the nodes, while for
the detected transition the slide change is larger due to the
added node. Another difficulty that arises are the memes that
are inserted into the lecture videos. The meme in Fig. 5c
has a similar color distribution as the lecture slides and
thus the transition within the meme is falsely detected as
a slide transition. In Fig. 5d an example is shown, where the
meme was inserted to the end of a static slide. The slide-
video transition is correctly detected, but from the two fast
slide changes, only one is detected. In the first step of the
approach, we defined that a static slide has to be at least
eight frames long, hence slides of one frame length cannot
be detected by our method, but for the most applications
these limitations are acceptable.

V. CONCLUSIONS

We presented a deep learning method to detect slide
changes in lecture videos such as hard and gradual transi-
tions. The quantitative evaluation showed a high performance
of our method for this task. Future work could comprise
extending the approach for a larger dataset and integrating it
for online teaching, for instance to automatically insert slides
for creating lecture notes in the AutoBlog framework.
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[13] O. Köpüklü, X. Wei, and G. Rigoll, “You Only Watch Once: A Unified
CNN Architecture for Real-Time Spatiotemporal Action Localization,”
arXiv preprint arXiv:1911.06644, 2019.

[14] W. H. Leung, T. Chen, F. Hendriks, X. Wang, and Z.-Y. Shae, “eMeet-
ing: A Multimedia Application for Interactive Meeting and Seminar,”
IEEE Global Telecommunications Conference (GLOBECOM), pp.
2994–2998, 2002.

[15] R. Liang, Q. Zhu, H. Wei, and S. Liao, “A Video Shot Boundary
Detection Approach Based on CNN Feature,” IEEE International
Symposium on Multimedia (ISM), pp. 489–494, 2017.

[16] W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo, “Multi-Task Deep
Visual-Semantic Embedding for Video Thumbnail Selection,” Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3707–3715, June 2015.

[17] Z. Liu, K. Li, L. Shen, and P. An, “Sparse Time-Varying Graphs for
Slide Transition Detection in Lecture Videos,” International Confer-
ence on Image and Graphics (ICIG), pp. 567–576, 2017.

[18] Z. Liu, K. Li, L. Shen, R. Ma, and P. An, “Spatio-Temporal Residual
Networks for Slide Transition Detection in Lecture Videos,” KSII
Transactions on Internet and Information Systems (TIIS), vol. 13,
no. 8, pp. 4026–4040, 2019.

[19] J. Luo, C. Papin, and K. Costello, “Towards Extracting Semantically
Meaningful Key Frames From Personal Video Clips: From Humans
to Computers,” IEEE Transactions on Circuits and Systems for Video
Technology (TCSVT), vol. 19, no. 2, pp. 289–301, 2009.

[20] D. Ma and G. Agam, “Lecture Video Segmentation and Indexing,”
Proceedings of the Society of Photo-Optical Instrumentation Engineers
(SPIRE), Document Recognition and Retrieval XIX, pp. 238–245,
2012.

[21] A. Maier, “AutoBlog,” https://autoblog.tf.fau.de/, 2020.
[22] A. Mavlankar, P. Agrawal, D. Pang, S. Halawa, N.-M. Cheung,

and B. Girod, “An Interactive Region-Of-Interest Video Streaming
System for Online Lecture Viewing,” 18th International Packet Video
Workshop (PV), pp. 64–71, 2010.

[23] D. Perelman, “Slide-detector,” https://git.aweirdimagination.net/
perelman/slide-detector, 2020.

[24] G. Schroth, N.-M. Cheung, E. Steinbach, and B. Girod, “Synchro-
nization of Presentation Slides and Lecture Videos Using Bit Rate
Sequences,” 18th IEEE International Conference on Image Processing
(ICIP), pp. 925–928, 2011.
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Data Synthesis for Large-scale Supermarket Product Recognition

Julian Strohmayer1 and Martin Kampel1

Abstract— Training data acquisition for deep learning-based
visual product recognition systems on a large scale is laborious
and often infeasible due to the vast product assortments
containing tens of thousands of products and the densely packed
scenes. In this work, we propose a potential solution to this
problem in the form of an automatic data synthesis pipeline that
can generate training data for product detectors and classifiers
on a large scale. To demonstrate that our synthesis pipeline can
produce realistic data, we train a product detector using only
synthetic data and measure its generalization to real data. A
detection accuracy of 0.832 mAP@0.50 is achieved on real data,
showing that the model can learn from our synthetic data.

I. INTRODUCTION

Visual product recognition is a contemporary computer
vision problem where the aim is the detection and clas-
sification of individual products in images of supermarket
environments [19]. Potential applications of visual product
recognition include automatic checkout systems [18], real-
time inventory management [3], planogram compliance [13]
or assistive technologies for the visually impaired [8]. As
with generic visual object recognition, deep learning models
have proven effective in the special case of visual product
recognition. The amount of labeled data required for training
is, however, not easily acquired. The vast and constantly
changing product assortments, covering tens of thousands
of products, make manual acquisition and labeling infeasi-
ble. A promising solution to this data acquisition problem
are synthesis methods [14] that can automatically generate
practically unlimited amounts of training data with pixel-
accurate labels. While promising, the synthesis of realistic
data is challenging and requires a thorough understanding of
the target domain since any domain gap can limit model
generalization. In this paper, we present a scalable data
synthesis pipeline for the problem of supermarket product
recognition capable of generating realistic training data for
product detectors and classifiers.

II. RELATED WORK

In [19], Wei et al. conduct a comprehensive survey on the
current state of visual product recognition, which discusses
both challenges and techniques. A recent work by Qiao
et al. [15] proposes a synthesis approach similar to ours
to investigate the problem of object proposal generation in
supermarket images. A virtual supermarket with 1438 3D
product models is built in the Unreal Engine, allowing the
generation of randomized supermarket shelves. A synthetic

*This work is funded by the Wirtschaftsagentur Wien under grant
3540290.

1TU Wien, Computer Vision Lab, 1040 Vienna, Austria.
{julian.strohmayer,martin.kampel}@tuwien.ac.at

Fig. 1: Synthetic shelf image with cereal products, generated
with the proposed data synthesis pipeline.

dataset, generated with the proposed method, is used in
combination with the MS COCO dataset [12] to train a
product detector, showing that the use of synthetic data
improves detection accuracy. As demonstrated, the use of
3D models allows the generation of very realistic images.
However, this approach does not scale well to tens of thou-
sands of products, which is why we choose to approximate
complex product geometries with billboards. Furthermore, in
[3], Follmann et al. synthesize training data for the problem
of supermarket product instance segmentation by randomly
recombining segmented products. The authors demonstrate
that the introduction of synthetic data greatly improves the
detection and segmentation accuracy of Mask R-CNN [6],
FCIS [9], Faster R-CNN [16] and RetinaNet [10] models.
A recent development is the use of generative models for
product image synthesis. In [18], Wei et al. generate a
synthetic checkout dataset using CycleGAN [20]. Another
work in this direction by Tonioni et al. [17] employs a GAN
[5] to synthesize realistic product images for the training of
an embedder model.
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III. DATA SYNTHESIS

Our data synthesis pipeline is based on the free and open-
source 3D creation suite Blender1, which we control with a
Python script to generate randomized scenes of supermarket
shelves. The input data for our synthesis pipeline is sourced
from a commercial product database of GS1 Austria2, cov-
ering the Austrian market. Relevant fields are Global Trade
Item Number (GTIN), product image, and product dimen-
sions. This information is passed to the synthesis pipeline
in the form of a product list which automatically generates
a suitable training dataset. For a single data sample, the
synthesis process is as follows. First, an empty shelf is
created according to predefined parameters such as shelf
height, shelf depth, and the number of levels. Then each
level of the shelf is then randomly populated with products
sampled from the same product family to prevent unrealistic
product combinations (e.g., cereals and dairy products). For
this, the Global Product Classification (GPC) system is used
to classify the products at the GPC family level. To ensure
that each product is present at least once in the generated
dataset, a target product is selected for each image, which is
iteratively extracted from the product list. The target product
is placed, clearly visible, in the shelf center. The camera
position is then randomly chosen within a hemisphere of
radius r ∈ [0.75m,2m] in front of the target product. As
we only have a single frontal image per product, complex
3D product geometry is approximated as billboards with a
locked horizontal rotation axis. We map alpha textures onto
the billboards and align them relative to the camera position,
creating the impression of 3D geometry. After texturing, the
scene is rendered using the Cycles renderer and saved as 8bit
RGB image. For the generation of the bounding box labels,
each product is assigned a unique Blender object ID, and an
object ID pass of the scene is performed. The resulting binary
masks for each product are used to calculate the bounding
boxes. To improve label quality, bounding boxes smaller than
0.1% of the image size are eliminated. GTIN, class labels
and normalized bounding box coordinates (xc, yc, w, h) of all
products in the scene are combined in a separate label file.
The rendering of a 960×1280 image with 512 antialiasing
samples and the generation of the corresponding labels takes
120 seconds on an Nvidia RTX 2070 GPU.

IV. EVALUATION

To evaluate whether the proposed synthesis pipeline can
generate realistic training data for the problem of product
recognition, a deep learning model is trained exclusively on
synthetic data (no pretraining or finetuning on real data), and
its generalization to real data is assessed. We quantify the
domain gap between synthetic and real data by measuring
detection accuracy simultaneously on a synthetic and a real
validation dataset during training.

1Blender, https://www.blender.org/, accessed: 24.09.2021
2GS1 Austria, https://www.gs1.at/, accessed: 24.09.2021

Fig. 2: Measured detection accuracy on Vsynthetic and Vreal
over 100 training epochs.

A. Data

For model training, a synthetic dataset of 1000 images,
composed of products of the GPC families 50100000,
50220000, 50200000, 50120000, and 50190000, is synthe-
sized with the proposed method. An example image is given
in Fig. 1. The 1000 images are further split randomly in a 9:1
ratio into a training and validation dataset Vsynthetic. The real
validation dataset Vreal , used to assess generalization to real
data, consists of 100 real supermarket shelf images, which
were captured in three different Viennese supermarkets and
annotated by hand.

B. Model Training

As network architecture for this evaluation, we use a
RetinaNet [11] with ResNet50 [7] backbone, implemented
in the PyTorch torchvision.models3 package. The model is
trained as a class agnostic product detector that distinguishes
between two classes (product and background), as the under-
lying class number would exceed the capabilities of current
monolithic classifiers [4][19]. To erase any prior knowledge
derived from real data (MS COCO or ImageNet [1]) that
could interfere with our measurements, the model is trained
from scratch (pretrained=False, pretrained backbone=False,
trainable backbone layers=5). Predicted bounding boxes
with excessive overlap are eliminated by choosing a non-
maximum suppression threshold of 0.15 Intersection over
Union (IoU). The model is trained for 100 epochs using the
Adam optimizer with exponential learning rate decay from
0.0001 to 0.00001 and a batch size of 1. Detection accuracy
is measured as PASCAL VOC [2] mean Average Precision
(mAP) at 0.5 IoU, which we denote as mAP@0.50 hereafter.

C. Results

The training progress of our product detector model is
visualized in Figure 2, showing the mAP@0.50 on Vsynthetic
and Vreal over 100 training epochs. We achieve a maximum
mAP@0.50 of 0.836 and 0.832 on Vsynthetic and Vreal , respec-
tively. While a small domain gap can be observed over the
training period, the strong correlation between the datasets
shows that the model can generalize from synthetic to real
data. At the same time, this shows that our synthesis pipeline
is capable of generating realistic training data for the problem
of supermarket product recognition.

3torchvision.models, https://pytorch.org/vision/stable/
models.html, accessed: 24.09.2021
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Benign Object Detection and Distractor Removal in 2D Baggage Scans

Anna Sebernegg1 and Walter G. Kropatsch2

Abstract— Baggage screening contributes to security by help-
ing to identify threats. However, the complexity of X-ray scans
and the high intra-class variability make universal appearance-
based threat detection difficult. Consequently, baggage inspec-
tion still relies on human operators, and further developments
to assist them in their visual search tasks are desirable. This
work proposes utilizing object detection as a diagnostic aid,
where distractive benign objects are automatically detected
and removed from the images through inpainting. The applied
distractor removal successfully reduces visual saliency in benign
regions and decreases the overall clutter of the scans.

I. INTRODUCTION

Baggage inspection is increasingly automated, especially
liquid and explosive detection systems have emerged [19].
Nevertheless, automatic appearance-based threat detection
is hardly available due to the challenging nature of 2D
baggage scans [1], which include high levels of clutter
and overlapping objects due to tightly packed luggage [21],
in- and out-of-plane rotations [5], and schemes to conceal
prohibited items [11]. Therefore, human operators are still
required to detect threats over visual search [10]. This task
demands sustained attention over extended periods [19] and
is negatively affected by several factors, such as the stressful
environment [14] and complexity of baggage scans [18].

One possible way to support screeners and improve the
visual search task could be to enhance the baggage scans
by utilizing automatic object detection as a diagnostic aid.
Like computer-aided detection systems used in the medical
field [9], detected regions could be processed to focus the
viewer’s attention on critical content that requires further
investigation. One potential application proposed in this work
is to reduce the number of benign items that negatively
contribute to the visual clutter by detecting and inpainting
them automatically.

II. RELATED WORK

Extensive research is being conducted in appearance-based
object detection within baggage scans [8]. However, the
focus is on threats rather than benign items. Image processing
is another broad field utilized in scans to improve read-
ability [16], e.g., using material filters such as the organic-
only filter mentioned by Michel et al. [16]. Saliency-driven
image manipulation techniques such as distractor removal [6]
or attention retargeting [12] are especially explored for
photography and are less common in baggage screening.

*This work was not supported by any organization
1,2Pattern Recognition and Image Processing group, Technische Univer-

sität Wien, Favoritenstrasse 9-11, Vienna, Austria
1Email: e1526184@student.tuwien.ac.at
2Email: krw@prip.tuwien.ac.at

III. METHODOLOGY

This paper presents and experimentally evaluates a concept
for automatic detection and removal of benign items from
baggage scans. The goal is to reduce distractors to diminish
visual clutter and shift saliency to other image regions.
Therefore, object detection and distractor removal through
inpainting is applied, as visualized in Fig. 1. The inpainting
method should meet the following requirements:
• Reduce the overall visual clutter of the image
• Decrease salience in the inpainted benign regions
• Maintain or even increase salience in the rest of the

image, especially in regions containing threats
Before applying inpainting, the regions of interest must

be identified, which is done automatically by using a Con-
volutional Neural Network (CNN) for object detection that
provides bounding boxes of the detected threats and benign
items to a subsequent semantic segmentation performed
in MATLAB. The object detector is received by applying
transfer learning to the pre-trained EfficientDet model (D1)
provided by the TensorFlow Object Detection API [3]. The
database used for training and evaluation of the model
consists of 3721 X-ray scans obtained from the public mono-
energy X-ray database GDXray [15] and baggage scans
created in cooperation with the CT Research Group at Wels
Campus in upper Austria. The database is divided into a
training set with 2938 images, a validation set with 632
images, and a test set with 151 images, whereby no images of
single objects are included for testing. The final model can
detect four threats and eight benign objects. Segmentation
is performed by binarizing the image using MATLAB’s
implementation of Otsu’s method [17] and morphological
operations.

The following inpainting approaches are tested to find a
suitable method for distractor removal, where the last three
are provided functions by MATLAB [13]: Uniform Inpainting
(inpainting with a uniform color from the background of
the image), Inpaint Coherent (coherence transport based
inpainting as described by Bornemann and März [2]), In-
paint Exampler (exemplar-based inpainting as described by
Criminisi et al. [4]), and Regionfill (inpainting by inward
interpolation from the outer pixels of the region [13]).

The effects of distractor removal on human visual attention
are evaluated in two ways. Firstly, quadtree complexity as
proposed by Jégou and Deblonde [20] is used to obtain the
enhanced baggage scan’s total visual clutter and compare it
to the original image to determine if the distractor removal
successfully reduces clutter. This method performs quadtree
decomposition, where the number of cells in the result-
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ing quadtree determines the global clutter value. Secondly,
local saliency changes are measured using the Itti-Koch-
Niebur Saliency Model (IKN) [7] provided by the Saliency
Model Implementation Library for Experimental Research
(SMILER) [22]. A saliency map, as shown in Fig. 2, is
calculated for both the original and enhanced image and
compared to assess how salience is affected by the distractor
removal. A secondary objective is to evaluate the effect
of distractor removal on object detection by feeding the
enhanced images back as input to the CNN, creating a
feedback loop. CNN’s, salience models, and the human
primary visual cortex consider basic features, such as edges,
for their computations [7]. Since distractor removal reduces
these features to decrease salience in the target region, it is
interesting to investigate how it affects object detection. The
inpainting methods are evaluated with the test set, ignoring
images without benign objects, resulting in a set of 130
images in total.

Fig. 1. From left to right: original scan, detected benign and threat objects,
and distractor removal applied with Regionfill.

IV. EXPERIMENTAL EVALUATION

All methods except Uniform Inpainting reduce the total
visual clutter for at least 70% of the 130 images. Regionfill
even achieves an efficiency of 95.4%.

Uniform Inpainting is the only method that fails to de-
crease distractors’ salience and even increase it on aver-
age. The other methods successfully reduce the salience of
distractors. Regionfill performs best by reducing salience in
96.9% of the 130 evaluated images by an average of 31.94%.
These results are consistent with the clutter measurements.
The salience of threat regions is maintained or even slightly
increased by the distractor removal methods.

Since the primary goal of distractor removal methods is
to mask distracting elements, inpainted benign items should
no longer be detectable. Therefore, a crucial question is
whether the detection model correctly rejects the removed
benign items. Regionfill performs best with 86.51% correct
rejections of the 583 inpainted benign items. This result,
however, also means that at least 13.49% of the removed
benign items are still detectable by the model. This can be
partly explained by benign objects overlapping threats, as
they cannot be fully inpainted. Otherwise, there is a risk that
the threat will become unrecognizable. Moreover, semantic
segmentation may fail when benign and threats are close
together. Uniform Inpainting performs worst with a correct-
rejection rate of 66.27%, presumably because the shapes
of the inpainted items are still very prominent, which can
be seen in the rightmost image in Fig. 3. All distractor

removal methods lead to an increase in true-positive detec-
tions of benign items, indicating that the model can identify
additional items after distractor removal is applied. On the
original images, 583 of 1015 benign items could be detected
successfully. After applying the methods to the images, the
model detected further 1.4%-3.2% benign items, raising the
true-positive rate for benign items from 58.4% to 59.8% -
61.6%. Furthermore, false-positive detections are decreased,
at most by 28.87%.

Fig. 2. From left to right: The original image with a marked threat and its
enhanced version, their corresponding salience maps, and the comparison of
the two maps. Red denotes a reduction in salience, and green an increase.

Fig. 3. Predictions on the original scan and after Regionfill and Uniform
Inpainting are applied. Regionfill leads to a higher confidence and a new
detection, while Uniform Inpainting fails to mask all distractors.

V. CONCLUSION

The experiments demonstrate that removing distracting
items positively influences the scans’ salience and success-
fully reduces visual clutter. The results suggest that detecting
benign items in combination with distractor removal methods
facilitates the visual search task, as clutter and salience are
influential factors. This assumption is supported by the pos-
itive effect of the distractor removal on the object detection.
Moreover, supplemental detection of benign objects provides
additional information and is probably more practical than
sole threat detection. While threats must not be overlooked,
benign detection must only be accurate, without the need to
detect all present benign objects. Furthermore, benign items
are not usually deliberately concealed.

An essential disadvantage of distractor removal in 2D
is that image information is artificially altered or removed
without revealing new information to the viewer. Therefore,
removing objects could be misleading. We hypothesize that
this disadvantage is omitted as soon as more information
about the bag is available, such as when working with
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computed tomography that provides volumetric data of the
bag. Distractor removal techniques still have to be applied
with caution. For example, removing objects that are part of
more complex constructions can have an undesirable effect
by making the entire construction unrecognizable.
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[22] C. Wloka, T. Kunić, I. Kotseruba, R. Fahimi, N. Frosst, N. D. Bruce,
and J. K. Tsotsos, “Smiler: Saliency model implementation library for
experimental research,” arXiv preprint arXiv:1812.08848, 2018.

69



D
ra

ft

Explaining YOLO: Leveraging Grad-CAM to Explain Object Detections

Armin Kirchknopf1, Djordje Slijepčević1, Ilkay Wunderlich2, Michael Breiter2,
Johannes Traxler2, and Matthias Zeppelzauer1

Abstract— We investigate the problem of explainability for
visual object detectors. Specifically, we demonstrate on the
example of the YOLO object detector how to integrate Grad-
CAM into the model architecture and analyze the results.
We show how to compute attribution-based explanations for
individual detections and find that the normalization of the
results has a great impact on their interpretation.

I. INTRODUCTION

Today’s complex computer vision models require mecha-
nisms that explain their behavior. This has fueled intensive
research in eXplainable Artificial Intelligence (XAI) [1].
Most work on XAI in the visual domain focuses on explain-
ing visual classifiers, i.e., their representations learned and/or
their decisions. Currently, there is a lack of XAI approaches
for visual object detectors, because their special architectures
impede the application of XAI methods.

In this paper, we investigate the problem of XAI for visual
object detectors on the example of the YOLO detector [5].
We integrate Grad-CAM [7] into the model to generate expla-
nations for individual object detections, i.e., bounding boxes.
We compute attention maps at detection level to assess which
information leads to a certain decision. For this purpose,
we focus on both scores estimated by the YOLO detector,
namely objectness and class probability, to obtain a more
comprehensive explanation. We critically analyze the results
and propose different normalization strategies to make the
attention maps of different object detections within an input
image or across different images comparable. We analyze
results obtained for true and false detections and compare
different normalization variants for result presentation.

There is a large corpus of related work both on object de-
tection [3] and on XAI [1]. Surprisingly, the combination of
both fields has hardly been investigated. Rare exceptions are
the work of Tsunakawa et al. [8], who proposed an extension
of a propagation-based XAI method (Layer-wise Relevance
Propagation, LRP) for Single Shot MultiBox Detectors and
Petsiuk et al. [4], who proposed a post-hoc model-agnostic
XAI method for object detectors based on randomized input
sampling. The lack of literature may be a consequence of the
highly specific architectures of object detectors that impedes
the integration of XAI methods. Object detectors require
the explanation of localization and classification aspects and
provide multiple scores that influence the likelihood of a

*This research was funded by the Austrian Research Promotion Agency
(FFG) project 876468 “SAiEX”, https://bit.ly/saiex

1Institute of Creative Media Technologies, St. Pölten University of Ap-
plied Sciences, Austria, firstname.lastname@fhstp.ac.at.

2EYYES GmbH, Austria, firstname.lastname@eyyes.com.

detection. This makes the direct application of many, es-
pecially self-learned explainability approaches [2], difficult.
More promising candidates are post-hoc XAI approaches.
A popular example is LIME [6], which can be adapted
easily to explain the final output of a detector. To explain
internal scores, the direct application is, however, not pos-
sible. Additionally, the iterative probing approach of LIME
makes it slow. A faster and more flexible approach is Grad-
CAM, which propagates back the activation of a certain
neuron (an output neuron or some intermediate neuron) to
the last feature map of the underlying convolutional filter
stack and uses it to weight its activations. The weighted
activations in the last feature map can be directly up-scaled
and overlaid with the input image to obtain an attribution-
based explanation in terms of the high-level features learned
by the convolutional filter stack. Note that this is more mean-
ingful than back-propagating along the gradients completely
through the network until the input pixels (guided Grad-
CAM), as individual pixels lack semantic meaning.

II. METHOD

Our detection model is based on Tiny YOLO v3 [5] archi-
tecture with optimizations for inference on re-configurable
hardware [9] and contains two detection heads to account
for objects with different scales. The last convolutional
layer of each head stores multiple scores for each potential
bounding box: (i) objectness, which provides the likelihood
for observing an object in general and (ii) a vector of class
probabilities for all target classes. For head 1, this layer has
a size of 1x1x512x30 and for head 2 1x1x256x30. Specific
neurons in these layers represent the input to Grad-CAM for
the generation of explanations. After these layers the YOLO
architectures applies a non-maximum suppression (NMS)
and a decision threshold filters out the most likely detections.

YOLO Network

Input Image Inference
Target Boun-

ding Box

Identify
NeuronsBackprop.feat.

map

Grad-CAMNormalize

Explanation

Scale & Overlay

Fig. 1. Proposed explainability approach. Here p0 represents the objectness
neuron and p2 the target class neuron in the last layer of the respective
detection head.

Grad-CAM was originally proposed for conventional CNN
architectures to explain decisions in terms of abstract features
learned in the last convolutional layer. Considering that
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True POS

Input

Objectness,
detection-level norm.

Objectness,
image-level norm.

Objectness,
dataset-level norm.

Class probability,
detection-level norm.

Class probability,
image-level norm.

Class probability,
dataset-level norm.

Fig. 2. Explanations for a true positive detection for objectness and class probability and three different normalization variants.

YOLO is based on a convolutional filter stack, Grad-CAM
is applicable, however, not without certain modifications.
For a given detection, we first identify the neurons in the
last convolutional layer of the respective head corresponding
to the class probability and objectness of the investigated
bounding box by reversing the NMS process. These neurons
represent the starting points to calculate gradients towards the
neurons of the underlying convolutional layer (i.e., the top-
level feature map of the convolutional stack). We follow a
two-step approach to obtain explanations for both scores. The
gradients are first used to weight the activation map of the
underlying convolutional layer. The weighted activation map
is then averaged over all channels of the layer and upscaled
(i.e., interpolation) and mapped (i.e., color coding) to the
input image (416px x 416px), see Figure 1. The upscaled
activation pattern highlights sections in the input image that
have a strong relation to the class or objectness of the
investigated bounding box. Note that due to the architecture
of YOLO the result of Grad-CAM are activations at the
global image level, i.e., they are not limited to the observed
bounding box, e.g., as shown in Figure 2.

Grad-CAM activations are by default min-max normalized
to improve visibility. This leads to incomparable activations
patterns between different object detections in the same
image and across different images. To account for this, we
propose three different normalization levels: detection-level
(default), image-level (joint normalization of all explanations
in an image), and dataset-level (joint normalization of all
explanations across a set of images).

III. EXPERIMENTS AND RESULTS

a) Model training: The network was trained on data
of front collision and rearview cameras from both public
datasets including COCO, KITTI, BDD, and OpenImages as
well as non-public data from the company EYYES GmbH
(www.eyyes.com). The network was trained to detect five
classes, i.e., person, cycle, car, truck, and train.

b) Experimental Setup: Our evaluation scenario origi-
nates from autonomous driving. For the evaluation, we use a
subset of the Cityscapes (www.cityscapes-dataset.
com/) dataset (which was not used for training). It consists
of 3470 images showing urban street scenes from 21 cities
and containing annotations of 30 classes at pixel-level. We
use a subset of the above mentioned five classes. For the

different normalization strategies we use min-max normal-
ization of the Grad-CAM activations at different levels.

c) Results: Results are shown as differently normalized
heatmaps overlaid on the input image for the objectness and
the probability of the detected class. Figure 2 shows a correct
detection of a person. The objectness shows a different
activation pattern than the class probability. While class
probability provides strong activations mostly on persons
(including the detected one), objectness activates on all
regions where the network sees potential objects. Results
for detection-level normalization are most distinct, which
can, however, lead to wrong conclusions, especially, when
the explanation shall be compared with other detections. It
actually depends on the question investigated which type of
normalization is best suited. For example by normalization
at dataset-level the activation strength of the detected person
becomes directly comparable to all explanations in all other
images and thus direct comparisons become possible which
cannot be performed at detection level. This can help to
develop a deeper understanding of the detector’s behavior.

Figure 3 shows a falsely detected truck on the same
input image. The white rectangular shaped text on the red
poster seems to mislead the detector into seeing a truck.
Both objectness and class probability strongly activate at
detection-level raising the impression that the detector fails
with high confidence. This is actually not true, which can be
seen via normalization at dataset-level (not shown) where
both activations are strongly attenuated, showing that the
detector is actually not sure about the detection.

FALSE POS

Objectness,
detection-level norm.

Class probability,
detection-level norm.Input

Fig. 3. Explanations for a false positive detection.

IV. CONCLUSION AND FUTURE WORK
We have investigated explainability for object detection

by integrating Grad-CAM into YOLO. We can visualize its
internal decision scores and thereby help to explain object
detections. Our results show that normalization is essential to
make different explanations comparable, e.g., across different
images. Our approach is efficient: generating one explanation
takes approx. half a second. In future, we aim to use these
explanations to identify potential false detections at run-time.
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Case Study: Ensemble Decision-Based Annotation of Unconstrained
Real Estate Images

Miroslav Despotovic1, Zedong Zhang1, Eric Stumpe2 and Matthias Zeppelzauer2

Abstract— We describe a proof-of-concept for annotating real
estate images using simple iterative rule-based semi-supervised
learning. In this study, we have gained important insights
into the content characteristics and uniqueness of individual
image classes as well as essential requirements for a practical
implementation.

I. INTRODUCTION

The annotation of unlabeled images is an important task
for the assignment of metadata, which can be particularly
challenging within a given knowledge domain. Thus, image
metadata is being increasingly used in real estate research,
e.g., for valuation [9], location analysis [5], or for estimating
the condition of a building [4]. In the scientific literature,
there are very few contributions on the classification of
unlabeled images in the domain of real estate [7]. In this short
paper, we present an approach to semi-supervised labeling of
images containing interior and exterior views of real estate
using simple ensemble classification rule.

II. PROBLEM STATEMENT

To maximize the information potential of the data, it must
be tagged with meaningful labels, which in practice can
require considerable manual effort. A typical approach for
annotating unlabeled data autonomously is semi-supervised
learning (SSL), where an initial training set of labeled
data Tι is defined by clustering and/or manual selection
and the trained model is used to infer unlabeled data Tυ
systematically without interactively querying the user (e.g.
active learning with embedded Human-in-the-Loop) [6]. Our
motivation for this case study is to provide a proof-of-concept
for setting up a model for automatic pre-selection of images
from large unlabeled datasets that may be used for training
ConvNets to learn the visual clues that are indicative of the
quality of real estates. This work is therefore intended to
serve as the basis for a more extensive follow-up study.
Thus, the main incentive is to investigate how the proposed
model processes complex intrinsic properties of real estate
photographs, as well as which domain-specific labels are
generalized well by the classifiers.

*This research was funded by the Austrian Research Promotion Agency
(FFG) project 880546 “IMREA” and we are very grateful to DataScience
Service GmbH for providing the data for this study.

1M. Despotovic and Z. Zhang are with the Kufstein
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(miroslav.despotovic@fh-kufstein.ac.at;
zedong.zhang@fh-kufstein.ac.at)

2E. Stumpe and M. Zeppelzauer are with the ICMT Institute of Cre-
ative Media Technologies, St. Pölten University of Applied Sciences, St.
Pölten 3100, Lower Austria, Austria (estumpe@fhstp.ac.at;
matthias.zeppelzauer@fhstp.ac.at)

Real estate images have different resolutions or were taken
under different lighting conditions with varying distances and
angles to the object. An additional challenge is that there are
only a limited number of relevant labels, and it is a priori
unclear which classes can even be captured from the images.
The data contains noise, samples that cannot be attributed
to a specific property characteristic, as well as redundant
information because real estate developers in local markets
often work with multiple agencies for advertising and sales.

III. APPROACH

We make the naive assumption that empirical error in
the decision boundary can be minimized by exploiting the
generalization capability of multiple ConvNets, provided that
a large amount of training data is available. In this regard,
we propose a SSL procedure as follows.

A. Iterative training

We use annotated data to iteratively fine-tune VGG16 [8]
and ResNet101v2 [2] (both pre-trained on the large ImageNet
dataset), starting from the initial training dataset Si. That is,
after each complete iteration, we infer labels in the unlabeled
dataset Tυ with fine-tuned networks N1 and N2 and enrich
training datasets S1 and S2 (one set per network) with new
instances. Thereby, we select randomly, at a lower threshold
of 100% accuracy, 5 predictions per class and network and
add them as new instances to the prior training sets. This
process is performed sequentially until we obtain training
sets S1 and S2 with 5000 instances each. The selection of 5
matches per class is deliberate to reduce the target risk due
to the learner’s prior knowledge [7]. The determination of
false predictions in the S1 and S2 is carried out within the
definition of experiment baselines (see IV-C).

B. Ensemble decision

We build a dataset Str consisting solely of instances of S1
and S2 that are predicted in concordance by both networks.
The inference of the SSL model is then evaluated by fine-
tuning a VGG16 with Str and testing it with an independent
dataset T1.

IV. EXPERIMENTAL SETUP

A. Data

The preprocessing of the data initially involves duplicate
removal by image-wise assignment of unique hash values
and calculating difference using Hamming distance. After
this step, our experimental data set Tυ eventually comprises
47k images. However, some redundant information remains,
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as agencies often add their logos when editing photos or
post-processing the image for marketing purposes.

Fig. 1. Experimental selection of real estate classes, Image source: [1]

For our study, we use a manually pre-selected ground
truth set Tι with 12 meaningful classes from the perspective
of real estate valuation. Figure 1 shows the experimental
class selection. This set is then partitioned into training Si,
validation V1 and test T1 datasets with a ratio of 1473-375-
240 instances and 12 balanced classes per set. We control
our experiment by setting multiple baselines (see IV-C) with
training sets Si, S3 and S4 (see Table I). S3 is a manually
selected subset of S1 where only correctly predicted labels
are kept. S4 is defined like S3 with the exception that the
incorrectly predicted labels are not excluded but manually
added to the images with correctly predicted labels from S1.

B. Setup & Training

For the training we utilize extensive data augmentation
including centering, rescaling and shifting. Training param-
eters for both nets are learning rate of 0.001, decay of
0.001, momentum of 0.9 and a batch size of 40 for N1
resp. 100 for N2 . All nets were trained with cross-entropy
loss and adamax optimizer [3]. A full SSL iteration was
initially set to 200 epochs and successively reduced: I1 =
200, I2 = 200//2, I3 = 200//3, I4 = 200//4, ..., In = 200//4.
Since we observed higher loss/accuracy variability in the ear-
lier and later training phases, a larger number of epochs was
deliberately chosen. Thus, we do not apply early stopping
for regularization but select the training stage with the best
performance.

C. Evaluation

We aim at answering following research questions: (1) are
the individual classes sufficiently discriminative to achieve an
acceptable generalization of the classifier? and (2) can the
proposed experimental SSL approach achieve a comparable
result to the established baselines? To measure the perfor-
mance of the model, we set up multiple baselines whose
performance was evaluated with the test set T1. The lower
baseline is defined as the performance of a fine-tuned VGG16
trained on initial training set Si. The mid baseline is specified
through the performance of a fine-tuned VGG16 trained on
S3. Finally, we define an upper baseline as the performance
of a fine-tuned VGG16 trained on S4.

V. RESULTS

In the Figure 2 showing Receiver Operating Characteristic
(ROC) for each predicted class, a larger deviation is noticable
for class 4 (map), followed by class 12 (surrounding) and
class 10 (balcony/terrace). These are basically classes that do
not represent interior spaces. An expected confusion can be
seen between class 1 (building facade) and class 3 (building
CAD). On the other hand, all classes with interiors were
particularly well recognized by the classifier, indicating their
discriminative visual content. However, false-positive test
results point to a minor misinterpretation for classes attic
and staircase.

Fig. 2. ROC of individual classes.

Table I shows that the SSL model slightly underperforms
lower and middle baseline, but the performance is almost
consistent with the upper baseline. This is attributed to the
larger proportion of false positives for classes stairs, building
facade and building CAD in Str (compared to S1 and S2)
and thus the inconsistent class balance during the training.
Notably, the overall class balance in Str (intentionally not
supervised) expressed by coefficient of variation CV (18%)
is smaller than CV for S3 (30.2 %) and S4 (41.7 %).

With this study, we have gained first insights into the
challenging task of enriching metadata from real estate
images. We intend to build on the results of the presented
approach in a more comprehensive follow-up study to gain
further valuable evidence.

TABLE I
COMPARISON OF CLASSIFICATION ACCURACY (IN %) FOR SSL MODEL

AND BASE MODELS.
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Human Tracking and Pose Estimation for Subsurface Operations

Roland Perko1, Hannes Fassold1, Alexander Almer1, Robert Wenighofer2, and Peter Hofer3

Abstract— Human lives are particularly at risk in critical
security situations in underground train stations compared to
surface events. Due to the closed situation of such subsurface
events, considerable obstacles to the safe and efficient evacu-
ation of people after an attack must be taken into account.
Thus, this work presents a computer vision system based on
artificial intelligence that uses available surveillance cameras
in the optical and the thermal spectrum to detect and track
human beings, and to allow an activity classification based on
a pose estimation. Those results are then transferred into a 3D
common operational picture to assist subsurface operations.

I. INTRODUCTION
Subsurface structures, like the whole subway infrastruc-

ture, are indispensable for modern societies. To ensure safety
and efficient reaction to crisis, a deep understanding of
the underground structure is necessary for specially trained
and equipped personnel, aware of the associated risks and
dangers – the so called Subsurface Operators [2]. In the
special case of a terrorist attack available technical infras-
tructure can be employed to derive valuable information
for those operators. Since most subsurface structures are
equipped with surveillance cameras, the aim of this work
is to analyse that data to assist the crisis team. From the
computer vision perspective, three important queues can be
derived: (1) Detection of objects of interest, in particular
humans and vehicles, (2) tracking of those objects over
time, and (3) activity recognition, in particular if humans
are walking, standing, sitting, or lying.

With the knowledge of the coarse location and orientation
of the cameras, the detections can be projected onto a map
or a 3D model, which then serves as a common operational
picture within a virtual reality system. To simulate the
subsurface environment the test site Zentrum am Berg (ZaB)
is chosen which allows underground research, development,
training, and education at 1:1 scale [7]. An exemplary view
of one of the tunnel tubes is depicted in Figure 1. This
specific facility is equipped with multiple optical and thermal
cameras (which are very important since critical events often
occur in low or no light conditions) that serve as input for the
developed computer vision and artificial intelligence system.

II. METHOD
This section reports an object detection and tracking,

pose estimation for activity recognition, and the common
operational picture.

1Roland Perko, Hannes Fassold, and Alexander Almer are with Joanneum
Research, Austria {firstname.lastname}@joanneum.at

2Robert Wenighofer is with Montanuniversität Leoben, Austria
robert.wenighofer@unileoben.ac.at

3Peter Hofer is with the Theresianische Militärakademie, Austria
peter.hofer@bmlv.gv.at

Fig. 1. Subsurface environment at ZaB with ground control points shown
in red color for extrinsic camera calibration.

A. Object Detection and Tracking

For the detection and tracking of persons (and other
objects), we base upon the OmniTrack algorithm [1]. It is
real-time capable and combines a powerful deep learning
based object detector (YoloV3 [8]) with high-quality optical
flow methods (TV-L1 [11]). Within this work, we updated the
key components of the algorithm to more recent methods.
Specifically, for the object detector component we switched
from YoloV3 to the Scaled-YoloV4 method [10]. It achieves
higher accuracy by employing a cross-stage partial network
and can be easily scaled to multiple resolutions. Additionally,
instead of the classical TV-L1 algorithm for optical flow we
employ the recently proposed RAFT optical flow algorithm
[9]. The RAFT optical flow method achieves high accuracy
of the motion field and generalizes well to other domains
(like thermal images which have a different characteristic
than RGB images). Note that for both RGB and thermal
input images, we use the standard Scaled-YoloV4 pretrained
model, which has been trained on the MS COCO dataset [6]
(consisting of RGB images). We do not fine-tune or retrain
on a specific thermal image dataset. For the purpose of the
project we only use the two classes humans and vehicles.

B. Human Pose Estimation

For human pose estimation, we employ the EvoSkeleton
algorithm [5]. The method evolves a limited dataset to
synthesize unseen 3D human skeletons based on a hierar-
chical human representation and heuristics inspired by prior
knowledge. Via this special data augmentation procedure,
EvoSkeleton achieves state-of-the-art accuracy on the largest
public benchmark (Human3.6M [3]) and additionally gener-
alizes well to unseen and rare poses. In order to calculate
the poses (skeletons with 17 joints) for all detected persons
in one frame, we proceed as follows. First, for all detected
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persons the rectangular regions of interest are extracted to
a list of sub-images. These sub-images are now processed
in multiple batches, with the size of the batch set to 4
sub-images. The batching mechanism makes inference more
efficient and ensures that the GPU memory is not exhausted.
With a batch size of 4, roughly 5 GB GPU RAM are
occupied. The thermal images are transferred to a different
color range, which improves the performance of the pose
estimation.

C. Common Operational Picture

Since all information is gathered in image geometry, it has
to be transferred to the map projection of the 3D common
operational picture. Therefore, the cameras are calibrated
intrinsically using planar calibration random dot targets. The
extrinsics are determined using ground control points (cf.
the red points in Figure 1) within a least squares parameter
adjustment. This calibration allows 2D information in image
geometry to be intersected with an existing 3D tube model
that was acquired via terrestrial laser scanning for the whole
ZaB subsurface test site.

III. RESULTS

Figures 2 and 3 depict one video frame of an optical, re-
spectively, thermal camera superimposed with the bounding
boxes from the human detection and the human skeleton for
each detection.

Fig. 2. Human detection and skeleton estimation for an optical image.

Fig. 3. Human detection and skeleton estimation for a thermal image.
The color coding scheme of the thermal image was altered to improve the
quality of the pose estimation.

Figure 4 depicts a screenshot of the 3D common op-
erational picture within a virtual reality system where the
subsurface operators get a simplified overview of the human
detections and classifications.

Fig. 4. The 3D common operational picture within a virtual reality system
(illustration courtesy of [4]).

For RGB video, initial experiments show that both the
object detection and tracking, and also the pose estimation
work very well. For thermal video, the results are worse,
especially for the pose estimation. This can be attributed to
the domain gap, the fact that both methods have originally
been trained on RGB image datasets and not on thermal
images. Nonetheless, it seems that even on thermal video
the result of the pose estimation is good enough for our task
of activity classification of persons. Regarding runtime, the
object detector and tracker works in real-time, whereas the
pose estimation is not real-time capable. We will investigate
techniques like 16-bit inference or frame subsampling in
order to achieve real-time performance also for the pose
estimation.

IV. CONCLUSION

A computer vision system for human tracking and pose
estimation was presented, custom-tailored for subsurface
operations, based on existing surveillance infrastructure. In
the future, the results from the pose estimation, together
with the motion information of the tracked persons, will be
used for activity classification. Specifically, via the motion
information a person could be classified either as stationary
or moving (walking / running). Furthermore, the pose esti-
mation information will be used to for activity recognition, in
particular, whether a person is standing or lying, by analysing
the person’s spine orientation. Another future research focus
is to preserve the privacy of people, where one option would
be to use only thermal cameras.

ACKNOWLEDGMENT

The presented research activity is embedded into the
project NIKE-SubMovCon #879720 within the Austrian Se-
curity Research Programme KIRAS, funded by the Austrian
Research Promotion Agency (FFG).

77



D
ra

ft

REFERENCES

[1] H. Fassold and R. Ghermi, “OmniTrack: Real-time detection and
tracking of objects, text and logos in video,” in Proc. ISM, 2019.

[2] P. Hofer, “Coping with complexity. The development of comprehen-
sive subsurface training standards from a military perspective,” BHM
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Multi-Spectral Segmentation with Synthesized Data for Refuse Sorting
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Abstract— Refuse sorting is a key technology to increase the
recycling rate and reduce the growths of landfills worldwide.
However, monitoring and parameterization of sorting facilities
is still done in a mostly static fashion. This work combines
multi-spectral imaging with deep learning based image recogni-
tion to monitor and dynamically optimize processes in sorting
facilities. Our solution is capable of monitoring the sorting
process remotely avoiding potentially harmful working conditi-
ons due to dust, bacteria, and fungal spores. Furthermore, the
introduction of objective sorting performance measures enables
informed decisions to improve the sorting parameters and react
quicker to changes in the refuse composition.

I. INTRODUCTION

The global refuse production is still on the increase
worldwide, since the refuse output increases faster than the
recycling rates [9]. The ever-changing refuse composition
poses a major challenge to automated sorting in recycling
application. This work presents preliminary findings of KI-
Waste [5] capturing the refuse composition on conveyor belts
in a refuse sorting facility. This is done by multi-spectral
imaging and deep learning for semantic segmentation and
object recognition on refuse streams at key points in the
sorting facility.

II. RELATED WORK

Sorting facilities extract usable fractions with sorting and
shredding machines connected by conveyor belts [4]. Image
recognition applied to the refuse streams on these conveyor
belts is capable of capturing the refuse composition since
different substances have different spectral reflection charac-
teristics. Thus, multi-spectral cameras can provide a spectral
fingerprint of the material streams on the conveyor belts [12],
[13]. A four-channel setup is often used consisting of RGB
plus near-infra-red (NIR) cameras [3], [15], [11], [10]. In ad-
dition to these two-dimensional (2D) multi-spectral systems,
a tree-dimensional (3D) acquisition can capture geometric
properties useful in automatic material separation.

The resulting images of the refuse on the conveyor belt
are the input for image recognition software identifying
predefined refuse categories on a pixel-wise basis. Traditional
image recognition techniques based on color and gradient
features are typically not able to handle the large variations in
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appearance and shape occurring in mixed-material streams.
Convolutional neural networks (CNNs) [7] have shown great
performance on a variety of image recognition tasks inclu-
ding semantic segmentation [8], where a category label is
assigned to each pixel of an image. The results of the image
recognition are a good basis for predictive maintenance,
optimization, automation and self-adaptation of the refuse
sorting process [14].

III. IMAGE CAPTURING AND CLASSIFICATION

The high variety in substances and the challenging en-
vironmental conditions like dust, dirt, lighting, temperature,
and vibrations make the image capturing challenging. We
overcome these challenges by employing a line-scan-based
multi-spectral system with a light-sectioning method that
uses laser-line projection to determine surface profiles. It
outputs high-quality four-channel multi-spectral 2D images
and 3D registered image data.

The hardware setup is designed so that all capturing devi-
ces cover the same acquisition area. Nevertheless, calibration
methods are required, registering the captured image data
to each other. Finally, all image modalities are transformed
into one common coordinate system by geometric mapping,
ensuring that each pixel has a direct correspondence between
geometric and spectral information.

The image classification segments each image pixel-wise
into the predefined refuse categories by state-of-the-art fully-
convolutional CNNs with a huge number of trainable pa-
rameters. To set these parameters in a meaningful way,
CNNs need to be trained with hundreds or thousands of
representative ground truth images, where each pixel is
correctly annotated with its category.

Creating this ground truth manually requires an enormous
labeling effort. Hence, this project uses empty belt images
and images of mono-material refuse streams to effortlessly
create ground truth labels as shown in Fig. 1 (top row).
With this groundtruth, we can synthetically create realistic
mixed-material images with known proportions and locations
of refuse categories. This way we can generate unlimited
amounts of annotated mixed-material images as depicted in
Fig. 1 (bottom row).

IV. INITIAL PROJECT RESULTS

We train and evaluate the proposed approach within the
DeepLabv3+ [2] framework. Our training consists of two
steps. First, we train a binary segmentation model to distin-
guish belt vs. waste. In the second step, we use this model
to generate groundtruth for the known mono-material images
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Fig. 1. Mono-material stream samples and binary segmentation belt/waste (top row) and synthetic ground-truth data with mixed stream (bottom row).
All images: plastics (green), wood (turquoise), textiles (purple), paper (blue).

and use this groundtruth to train a model on synthetic mixed-
material images. Manually labeling only a few waste images
is sufficient for the binary network to train an initial model,
which is further improved with the automatically generated
labels it produces. Having a well working binary model, we
use it to label the mono-material images. We then generate
130k superpixels [1] of different sizes from 492 mono-
material images for our synthetic training regime, holding
back 324 for testing. During training of our multi-class
model, the synthetic mixed-material images are generated
on-the-fly to guarantee a diverse training set. We train the
network for 500k iterations with batch size 8 and Adam
optimizer [6] using an initial learning rate of 0.0001 and
a decay of 0.1.

As it is almost impossible to manually annotate mixed-
material streams even for a trained person, we limit evalua-
tion of the multi-class model to mono-material recordings.
A great accuracy of 84− 100% can be observed on the
refuse fractions clothes, paper, plastic and wood. Most of
the fractions are very well classified except for wood that
is partly misclassified as paper, as the confusion matrix in
Fig. 2 shows. The reduction of these confusions is topic
of an ongoing refinement and validation. In addition, while
we cannot measure the performance due to the lack of
groundtruth, we can visually observe very promising results
produced by our trained CNN model also on real mixed-
material streams, as shown in Fig. 3.

Fig. 2. Confusion matrix with pixel-wise accuracies in % for 324
test images. Apart from minor confusions between wood and paper, the
performance of the CNN model is very promising.

Several properties of the visible refuse can be calculated
when combining the semantic segmentation output with the

3D surface information, e. g. refuse category distribution,
particle size, and the height of specific regions of the image.
These properties will then be used for further analysis and
refuse processing parameters adjustment.

Fig. 3. Semantic segmentation results with plastics (green), wood (turquoi-
se), textiles (purple), paper (blue).

V. CONCLUSION & OUTLOOK

The project is currently in its first phase focusing on
hardware design, interface definition, and data collections.
The ground-truth generation strategy of using single refuse
categories as starting point to synthesise realistic refuse
mixtures proofed to be extremely valuable and brought a
tremendous speed-up in necessary data generation, which can
also have an impact on other similar deep learning applicati-
ons. This data collection is the basis for all future work in the
project including improvements of the camera and lighting
setup, training of image recognition models, domain-specific
adaption and improvements of the image recognition models,
validation of the image recognition results, and all further
analysis and optimizations.

Initial results of semantic segmentation and refuse classifi-
cation already showed the feasibility of the approach, which
will be further refined during the ongoing project and applied
to other machinery on the refuse processing chain as well as
to other sorting facilities in the future.
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[9] A. Minelgaitė and G. Liobikienė, “Waste Problem in European Union
and its Influence on Waste management Behaviours,” Science of The
Total Environment, vol. 667, pp. 86–93, June 2019.

[10] J. Piao, Y. Chen, and H. Shin, “A New Deep Learning Based Multi-
Spectral Image Fusion Method,” Entropy, vol. 21, no. 6, pp. 1–16,
June 2019.

[11] P. Prayagi, “Prism Based Multi-Sensor Technology for Multispectral
Imaging Applications,” 2017, Proceedings of the Conference on Hy-
perspectral Imaging in Industry (CHII 2017).

[12] A. Rinnhofer, “Combination of Multispectral and Multisensory Data,”
2019, Fraunhofer Vision Technology Day, INNOVATIVE TECH-
NOLOGIES FOR INDUSTRIAL QUALITY ASSURANCE WITH
IMAGE PROCESSING.

[13] M. Sackewitz, Leitfaden zur hyperspektralen Bildverarbeitung. Stutt-
gart, Germany: Fraunhofer Verlag, 2019.

[14] R. Sarc, A. Curtis, L. Kandlbauer, K. Khodier, K. E. Lorber, and
R. Pomberger, “Digitalisation and Intelligent Robotics in Value Chain
of Circular Economy Oriented Waste Management - A Review,” Waste
Management, vol. 95, pp. 476–492, July 2019.

[15] P. Wollmann, “Hyperspectral Imaging for Surface Inspections,” 2017,
Proceedings of the Conference on Hyperspectral Imaging in Industry
(CHII 2017).

81


	Cover
	Impressum
	Preface
	Program Committee
	Awards 2020
	Index of Authors
	Evaluation of Monocular and Stereo Depth Data for Geometry-Assisted Learning of 3D Pose  Andreas Kriegler, Csaba Beleznai, and Margrit Gelautz
	An Evaluation of the Machine Readability of Traffic Sign Pictograms using Synthetic Data Sets  Alexander Maletzky, Stefan Thumfart, and Christoph Wruß
	Efficient Instance Segmentation of Panoramic Images of Indoor Scenes  Werner Bailer and Hannes Fassold
	High-Speed Stereoscopic Fragment Tracking in Industrial Filter Cleaning  Friedrich Holzinger, Michael Schneeberger, Manfred Klopschitz, Martina Uray, Matthias Rüther, and Gernot Krammer
	Enabling Classification of Heavily-occluded Objects through Class-agnostic Image Manipulation  Benjamin Gallauner, Stefan Thalhammer, and Markus Vincze
	Real Estate Attribute Prediction from Multiple Visual Modalities and Missing Data  Eric Stumpe, Miroslav Despotovic, Zedong Zhang, and Matthias Zeppelzauer
	A study on robust feature representations for grain density estimates in austenitic steel  Filip Ilic, Marc Masana, Lea Bogensperger, Harald Ganster, and Thomas Pock
	On the Influence of Beta Cell Granule Counting for Classification in Type 1 Diabetes  Lea Bogensperger, Marc Masana, Filip Ilic, Dagmar Kolb, Thomas R. Pieber, and Thomas Pock
	Computed Tomography Reconstruction Using Generative Energy-Based Priors  Martin Zach, Erich Kobler, and Thomas Pock
	SliTraNet: Automatic Detection of Slide Transitions in Lecture Videos using Convolutional Neural Networks  Aline Sindel, Abner Hernandez, Seung Hee Yang, Vincent Christlein, and Andreas Maier
	Data Synthesis for Large-scale Supermarket Product Recognition  Julian Strohmayer and Martin Kampel
	Benign Object Detection and Distractor Removal in 2D Baggage Scans  Anna Sebernegg and Walter G. Kropatsch
	Explaining YOLO: Leveraging Grad-CAM to Explain Object Detections  Armin Kirchknopf, Djordje Slijepcevic, Ilkay Wunderlich, Michael Breiter, Johannes Traxler, and Matthias Zeppelzauer
	Case Study: Ensemble Decision-Based Annotation of Unconstrained Real Estate Images  Miroslav Despotovic, Zedong Zhang, Eric Stumpe, and Matthias Zeppelzauer
	Human Tracking and Pose Estimation for Subsurface Operations  Roland Perko, Hannes Fassold, Alexander Almer, Robert Wenighofer, and Peter Hofer
	Multi-Spectral Segmentation with Synthesized Data for Refuse Sorting  Harald Ganster, Alfred Rinnhofer, Georg Waltner, Christian Payer, Heimo Gursch, Christian Oberwinkler, Reinhard Meisenbichler, and Horst Bischof

